DESIGN MODELS FOR THE INTEGRATION OF ROADWAY TRANSPORTATION SYSTEMS INTO THE CITY'S PLANNING

Walid AL-SHAAR

Beirut, Lebanon Mobile phone: +96170271243

ABSTRACT: During the phase of preparation of new masterplan, urban planners have no scientific tool/criteria to calculate and to find the optimum value of road network area. The aim of this paper is to identify a calculation basis (design models), to be used during the design of new masterplans, and during the assessment of the road network in any city/town based on transportation demands (trip generation in the area). A new vision in urban planning can be represented by indicating the volume over capacity ratio (V/C), for each section of the roadway network in each LandUse, by identifying the mathematical proportionality of road surfaces, relatively to LandUse areas and population, relating these 3 factors based on the V/C ratio required, depending on trip generation rates and landUse types. These models can be identified by establishing mathematical models analogously related to the "Distribution of neurons in Mammalian Neocortex".

KEYWORDS: Models, Road, Land, Land Use;

INTRODUCTION

During the phase of the preparation of new master plan, urban planners don't have any scientific tool/criteria to calculate and find the optimum road network area to be distributed all over the master plan Land Use areas. Generally, urban planners state clearly that the percentage of road network area to the total land area in any new master plan should not exceed 30 to 35 % (as stated by many urban planners in Lebanese engineering consulting companies). The absence of such design models may lead to make the master plan not optimistically feasible and sometimes not feasible at all. Nowadays, the checking design process of roads system in any new master plan, consists of using the following checkpoints (as stated by transportation planners in different consulting engineering companies in Lebanon):

- Assessing the level of service in each road section independently,

- Relating road sections to a fixed (present and future) population size and a fixed LandUse size This research identifies a calculation basis (design mathematical models) to calculate the optimum road network area to be used during the design of new master plan, and during the assessment of the road network in any city/town based on transportation demands (trip generation in the area). N.B: Not taking into consideration any unexpected future urban development may present a big transportation planning issue.

Objectives

The aim of the research is:

- To identify a calculation basis (design models) to be used during the design of new master plan or during the assessment of the road network in any city/town based on transportation demands (trip generation in the area).

- To make any new urban master plan much more feasible by calculating the optimized road network area based on the design and the selected V/C ratio.

- To recommend the setup of new urban development legislation decrees, stating that the road network established for any new master plan (based on the design models), should present a reference for the capacity of the city/town in terms of the evolution and the growth of population, and in terms of urban expansion, where the concept here is to state that each resident, or any person entering the city (workers, employees, students...), should have an allocated space share of the road.

In addition and based on establishing an optimum road network, it is also recommended to set an urban expansion standard in collaboration with local authorities, and using law enforcement in order to keep the roadway system in track with the city growth.

Coordination with authorities (municipalities...) should periodically be held, in order to keep the population density, its uniformity, and the vertical/horizontal shape of the city in conformance with the master plan design.

- To identify the mathematical proportionality of road surfaces, population to the LandUse areas, relating these 3 factors based on V/C required ratio depending on trip generation rates and land use types.

Hypotheses

The following hypotheses motivated the research plan:

- Unplanned/Unlimited Urban expansions in the city, with non-respect to infrastructure road networks, may cause the oversaturation in cities in terms of services (road queuing times and delays...), infrastructures, natural resources, socio-economic conditions and environmental negative impacts.

- Not identifying the capacity of road network, and not setting a legislated plan for any urban expansion in term of population growth or any vertical/horizontal LandUse expansion, will lead to an uncontrollable urban evolution in the said city.

- An increase in the number of highways and motorways users may cause uncontrollable road and traffic management.

- City road network systems may be operated by similar principles as the Neocortex. Neurons are conduits for information-related signals on which brain computations rely, highways are conduits for physical materials and people. But from the perspective of the city as a whole, the materials and people that roads transport are crucial to the large-scale function provided by the city, and are, in a sense, signals—that one signal is electric and the other physical may not matter in regards to the fundamental principles governing them. In addition to the prima facie analogy between city highway networks and the brain's neural connections, there are several other reasons we chose to examine city highway networks (1).

METHODOLOGY

CHANGIZI and DESTEFANO in 2009 (1) stated that the total surface area of highways would appear to be of interest, and the neocortical analog of this is the cumulative surface area of white matter axons. Total white matter surface area is the product of the number of neurons, the length of white matter axons, and the axon diameter. Assuming axon length scales as the cube root of white matter volume, one may derive that the total surface area of white matter axons scales as the 1.375 power of total convoluted surface area. The total highway surface area may similarly be estimated, and assuming highway length scales as the square root of city land area, one may derive that total highway surface area scales as the 1.433 power of city land area, close to the 11/8 exponent for the analogous quantity in Neocortex.

Population scales as the 1.205 power of road (not highway) surface area for a set of 29 German cities (CHANGIZI and DESTEFANO, 2009)

Figure 1 depicts a comparison of City Highway System and Neocortex Exponents for Quantities as a Function of Surface Area.

Stage 1: Design Models Concept

These design models, can be identified by establishing mathematical models analogously related to the "Distribution of neurons in Mammalian Neocortex" by trying to identify the best parameters values, to fit the road network area required for different LandUse types.

This means defining a formulae combining the road network area to the LandUse area by using proportionality factors α , β .

Moreover, a population- LandUse surface area relation, is also be established by using a proportionality coefficient Δ (*Ref: Eng. Walid-AL-SHAAR*)

In this research, it is considered that road network surface area (instead of highway) may be estimated to be scaled as the 1.433 power of city land area, close to the 11/8 exponent for the analogous quantity in Neocortex.

Stage 2: Elaborated Design Models

The basis formulas to be used in the study are depicted below:

1- $A = \alpha \times S^{1.433}$ (A: represents the road network areas instead of Highway surface area)

(Ref: Eng. Walid-AL-SHAAR)

It is the formulae combining:

- The road network area "A" (Area in square miles) to

- The LandUse area "S" (Area in square miles)

- α is the Proportionality Factor to be calculated, it is relating A to S

2-
$$\mathbf{P} = \mathbf{\beta} \mathbf{x} \mathbf{A}^{1.205}$$
 (1)

It is the formulae combining:

- The road network area "A" (Area in square miles) to
- The LandUse population "P"

- β is the Proportionality Factor to be calculated, it is relating A to P

3- $P = \Delta x S^{1.727}$ (based on relating the above 2 formulas and eliminating the element "A")

(Ref: Eng. Walid-AL-SHAAR)

It is the formulae combining:

- The LandUse area "S" (Area in square miles) to
- The LandUse population "P"

- Δ is the Proportionality Factor to be calculated, it is relating P to S

Stage 3: Calculation of Proportionality Factors α , β and Δ

The third stage of this research is to establish the 5 scenarios for Land use road network in terms of the ratio of road Volume to Capacity (V/C) to be taken 25%, 40%, 50% and 75% (and 100% only for residential areas), then to determine the coefficient Alfa and Beta to fit the criteria of these ratios.

A base condition is taken in this study, where the traffic is considered to be constituted only by passenger car vehicles with dimensions as indicated below:

"The term 'one space' used in the standards refers to standing area only and the recommended minimum dimensions for a car space are 4.8 meters by 2.4 meters." (2)

A- V/C = 25% means that for each car, it should be a free space reservation area equal to 3 car spaces (free space reservation = $3 \times 4.8 = 14.4$ m/lane) in addition to the car space.

B- V/C = 40% means that for each car, it should be a free space reservation area equal to 1.5 car spaces (free space reservation = $1.5 \times 4.8 = 7.2 \text{ m/lane}$) in addition to the car space.

C- V/C = 50% means that for each car, it should be a free space reservation area equal to 1 car space (free space reservation = $1 \times 4.8 = 4.8 \text{ m/lane}$) in addition to the car space.

D- V/C = 75% means that for each car, it should be a free space reservation area equal to 0.33 car spaces (free space reservation = $0.33 \times 4.8 = 1.58$ m/lane) in addition to the car space.

E- V/C = 100% means that for each car, there is no additional free space reservation

V/C	Length of one	free space reservation for each	Total reservation for each
(0/2)	passenger car	passenger car	passenger car
(70)	(m/Lane)	(m/Lane)	(m/Lane)
25	4.8	14.4	19.2
40	4.8	7.2	12
50	4.8	4.8	9.6
75	4.8	1.58	6.38
100	4.8	0	4.8

Table 1: Free and total space reservation for different V/C: volume to capacity ratios

Source: Eng. Walid AL-SHAAR

For each LandUse area, the number of vehicles (trip generated in the land use) are calculated based on the ITE manual (3) which could guide us to set the road surface area required to serve each type of land use trip generations at different above selected volume to capacity ratios.

To be noted that the study shows for each alternative of volume to capacity (V/C) ratio, 3 base

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

conditions of lane widths (commonly known/used lane widths): 3.0 m, 3.3 m and 3.6 m to be taken into consideration during the calculation phase.

Table 2: Trip generation rates for different LandUse as per ITE manual 9th edition (3)

N°	LandUse Type	LandUse so	election from ITE	manual	Reference
	"Industrial Park Areas"	The trip ge model using <i>Gross Floo</i> <i>street traff</i> industrial a manufactur variation ir location to	neration model for g the "Average Vehi r Area" on a "wee ic, one hour betw ureas in Tripoli ar ing, service and wa n the proportion o another.	Industrial Park Areas is the icle Trip Ends vs 1000 Sq. Feet kday – peak hour of adjacent veen 7 and 9 am" since the re characterized by a mix of arehouse facilities with a wide f each type of use from one	ITE 9th Edition - Volume 2 - Page 146
1	Inc	Justrial Park (130)		_	
	Average Vehicle Trip En Number of St Average 1000 Sq. Fee Directional Distrit	is vs: 1000 Sq. Fee On a: Weekday, Peak Hour ol One Hour Be udies: 43 (GFA: 427 pution: 82% entering	t Gross Floor Area I Adjacent Street Traffic, tween 7 and 9 a.m. , 18% exiting	_	
	Trip Generation per 1000 Sq. Feet Gross Floor Area				
	Average Rate	Range of Rates	Standard Deviation		
	0.82	0.12 2.28	1.02	<u> </u>	
	"Recreational "	The trip gen using the "2 <i>Floor Area</i> <i>traffic, one</i> areas in Trip the recreation	eration model for R 4verage Vehicle Trip " on a "weekday - hour between 4 an poli are characterize onal and cultural ac	Recreational Areas is the model <i>p</i> Ends vs 1000 Sq. Feet Gross -peak hour of adjacent street d 6 pm " since the Recreational ed by letting the community join tivities.	ITE 9th Edition - Volume 2 - Page 960
2	Recreational Community Center (495)				
	Average Vehicle Trip En	ds vs: 1000 Sq. Fee On a: Weekday, Peak Hour ol One Hour Be	t Gross Floor Area Adjacent Street Traffic, tween 4 and 6 p.m.	_	
	Number of Si Average 1000 Sq. Fee Directional Distrit	udies: 7 GFA: 72 ution: 49% entering	51% exiting		
	Trip Generation per 1000 Sq. Feet 0	iross Floor Area			
1	Average Rate	Range of Rates	Standard Deviation		
	2.74	1.05 - 5.37	2.32		

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

N°	LandUse Type	Lar	ndUse sel	ection from ITE	manual	Reference
	"Residential"	The trip generation model for Residential Areas is the model using the "Average Vehicle Trip Ends vs Dwelling Units " on a "weekday – peak hour of adjacent street traffic, one hour between 4 and 6 pm" since the residential areas in Tripoli are characterized by mid-rise apartments located in buildings with 3 to 10 floors.				ITE 9th Edition - Volume 2 - Page 388
3	Mid-Rise Apartment (223) Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Number of Studies: 7 Avg. Number of Studies: Number of Studies: 7 Avg. Number of Dwelling Units: Directional Distribution: 58% entering, 42% exiting Trip Generation per Dwelling Units Standard Deviation					I
	"Commercial/Retail: Variety Store"	The usin <i>Flot</i> <i>traf</i> Con Vari	trip gene ng the "An or Area" fic, one f nmercial/ iety comr	ration model for V verage Vehicle Tri on a " weekday - hour between 7 a 'Retail areas in T nercial Stores.	Variety Store Areas is the model ip Ends vs 1000 Sq. Feet Gross - peak hour of adjacent street and 9 am" since the scheme of ripoli are characterized by the	ITE 9th Edition - Volume 3 - Page 1451
4	Variet (8 Average Vehicle Trip Ends vs: On a: Number of Studies: Average 1000 Sq. Feet GFA: Directional Distribution:		y Store 14) 1000 Sq. Feet Weekday, Peak Hour of A One Hour Betw 15 10 Not available	Gross Floor Area Adjscent Street Traffic, ween 7 and 9 a.m.		
	Average Rate	Range (of Rates	Standard Deviation		

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

N°	LandUse Type	LandUse selection from ITE manual	Reference
	" Educational: University-College"	The trip generation model for University-College Areas is the model using the "Average Vehicle Trip Ends vs Students" on a "weekday – peak hour of adjacent street traffic, one hour between 7 and 9 am".	ITE 9th Edition - Volume 3 - Page 1077
5	Univ Average Vehicle Trip En Number of St Average Number of Stu Directional Distrit Trip Generation per Student Average Rate 0.17	Versity/College (550) ds vs: Students On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. tudies: 8 dents: 13,372 pution: 78% entering, 22% exiting Range of Rates Standard Deviation 0.09 - 0.28 0.41	
	" Educational: High School"	The trip generation model for High School Areas is the model using the "Average Vehicle Trip Ends vs 1000 Sq. Feet Gross Floor Area" on a "weekday – P.M peak hour of Generator".	ITE 9th Edition - Volume 3 - Page 1024
6			

Vol.7, No.1, pp.147-171, March 2019

|--|

0	LandUse Type	Land	Use selection	on from ITE manua	l	Reference	ce
		High (5	School (30)			<u> </u>	
	Average Vehicle Trip Ends vs: On a:		1000 Sq. Feet (Weekday, P.M. Peak Hou	Gross Floor Area ur of Generator			
	Number Average 1000 Sq. Directional D	of Studies: Feet GFA: istribution:	44 194 31% entering, 6	59% exiting	-		
	Trip Generation per 1000 Sq. Fe	et Gross I	Floor Area				
	Average Rate	Range	of Rates	Standard Deviation			
	2.12	0.98	- 5.14	1.74			
	" Educational:	The tr mode	ip generation l using the '	on model for Element " <i>Average Vehicle Trip</i>	tary School Areas is the o Ends vs 1000 Sq. Feet	ITE Edition	9th
	" Educational: Elementary School"	The tr mode Gross street	tip generation l using the f s Floor Are traffic, one	on model for Element " <i>Average Vehicle Trip</i> ea" on a "weekday – e hour between 4 and	tary School Areas is the b Ends vs 1000 Sq. Feet peak hour of adjacent b 6 pm".	ITE Edition Volume Page 989	9th - 3 -)
	" Educational: Elementary School"	The tr mode Gross street	ip generation l using the form for Floor Are traffic, one try School 20)	on model for Element " <i>Average Vehicle Trip</i> ea" on a "weekday – e hour between 4 and	tary School Areas is the o Ends vs 1000 Sq. Feet peak hour of adjacent 6 pm".	ITE Edition Volume Page 989	9th 3 -)
	" Educational: Elementary School" Ele Average Vehicle Trip	The tr mode: Gross street ementa (5) Ends vs: On a:	ip generation l using the f <i>Floor Are</i> <i>traffic, one</i> try School 20) 1000 Sq. Feet G Weekday, Peak Hour of A One Hour Betw	on model for Element "Average Vehicle Trip ca" on a "weekday – e hour between 4 and Gross Floor Area adjacent Street Traffic, reen 4 and 6 p.m.	tary School Areas is the o Ends vs 1000 Sq. Feet peak hour of adjacent of pm".	ITE Edition Volume Page 989	9th - 3 -
	" Educational: Elementary School" Ele Average Vehicle Trip	The tr mode: Gross street ementa (5) Ends vs: On a: of Studies: Feet GFA: istribution:	ip generation l using the ' Floor Are traffic, one try School 20) 1000 Sq. Feet G Weekday, Peak Hour of A One Hour Betw 10 84 45% entering, 55	on model for Element "Average Vehicle Trip ca" on a "weekday – e hour between 4 and Gross Floor Area adjacent Street Traffic, ween 4 and 6 p.m. 5% exiting	tary School Areas is the o Ends vs 1000 Sq. Feet peak hour of adjacent of pm".	ITE Edition Volume Page 989	9th 3 -)
	" Educational: Elementary School" Elementary School Elementary Average Vehicle Trip Number of Average 1000 Sq. Directional D	The tr mode. Gross street ementa (5) Ends vs: On a: of Studies: Feet GFA: stribution: et Gross F	ip generation l using the ' Floor Are traffic, one my School 20) 1000 Sq. Feet G Weekday, Peak Hour of A One Hour Betw 10 84 45% entering, 55	on model for Element <i>"Average Vehicle Trip</i> <i>ca</i> " on a <i>"weekday –</i> <i>te hour between 4 and</i> Gross Floor Area adjacent Street Traffic, <i>teen 4 and 6 p.m.</i>	tary School Areas is the o Ends vs 1000 Sq. Feet peak hour of adjacent of pm".	ITE Edition Volume Page 989	9th - 3 -
	" Educational: Elementary School" Elementary School Elementary Average Vehicle Trip Number of Average 1000 Sq. Directional D Trip Generation per 1000 Sq. Fe	The tr mode. Gross street ementa (5) Ends vs: On a: of Studies: Feet GFA: stribution: et Gross F Bance	ip generation l using the ' Floor Are traffic, one try School 20) 1000 Sq. Feet G Weekday, Peak Hour of A One Hour Betw 10 84 45% entering, 55 Floor Area of Flates	on model for Element "Average Vehicle Trip ea" on a "weekday – e hour between 4 and Gross Floor Area adjacent Street Traffic, ween 4 and 6 p.m. 5% exiling	tary School Areas is the o Ends vs 1000 Sq. Feet peak hour of adjacent 6 pm".	ITE Edition Volume Page 989	9th 3 - 9

Source: ITE trip Generation manual 9th Edition

CALCULATION PROCEDURES

5.1. First Design Model relating Road network area and the LandUse area

The calculation for the interrelation coefficients α , of LandUse area and the related required road network area, will take place for the LandUse types within the indicated range of units as indicated in the table below, based on trip generation rates provided by the ITE Manual and the following

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

the formulae:

A= α x S1.433

Where

A: Road network area in the related LandUse (areas in square miles)

S: LandUse area (areas in square miles)

a: Proportionality Coefficient

LandUse type	Range of units in the study	Reason for this Selection of
	(1000 Sq. Feet)	the Range of units in the study
Industrial Park	140 - 10,000	The range of units is selected
Recreational areas	140-10,000	since it is commonly known that
Commercial areas	140-10,000	the minimum area could be considered 140,000 sq feet and
High school area	140-10,000	the maximum would not exceed
Elementary school area	140-10,000	10,000,000 sq. feet

Table 3: LandUse types and the range of units used in the study

Source: Eng. Walid AL-SHAAR

N.B: It is to notice that during the calculation, the used trip generation rates are:

a. The minimum values of trip rates indicated by ITE manual (3)

b. The maximum values of trip rates indicated by ITE manual, if the percentage of calculated required road does not exceed 35%, otherwise the maximum rate used is calculated based on this assumption (not exceeding the 35%) as the urban planners in Lebanon advise to not exceed this percentage.

Second Design Model relating Road network area and the LandUse Population

The calculation for the interrelation coefficients β , of Population and the related required road network area, will take place for the LandUse types within the indicated range of units as indicated in the table below, based on trip generation rates provided by the ITE Manual and the following the formulae:

$P=\beta x A1.205$

Where

P: Population in the LandUse

- A: Road network area in the related LandUse (areas in square miles)
- β: Proportionality Coefficient

LandUse type	Range of units in the study	Reason for this Selection of the Range of units in the study
Residential areas	2,000 – 25,000 (Population)	Residential areas/compounds studies in this research are considered to have a capacity of a minimum 2,000 residents and the maximum 25,000 residents
University area/campus	140 – 10,000 (Students)	It is commonly known that one university building or one campus can provide the educational services for a minimum of 700 students and maximum 7,000 students except other special cases

Table 4: LandUse types and their range of units used in the study

Source: Eng. Walid AL-SHAAR

N.B: It is to notice that during the calculation, the used trip generation rates are:

a. The minimum values of trip rates indicated by ITE manual

b. The maximum values of trip rates indicated by ITE manual, if the percentage of calculated required road does not exceed 35%, otherwise the maximum rate used is calculated based on this assumption (not exceeding the 35%) as the urban planners in Lebanon advise to not exceed this percentage.

Third Design Model relating LandUse area and the LandUse Population

Limitations: This model should be applied only for residential zones.

The following considerations should be taken into account prior to start applying this mathematical model and finding the optimal proportionality factor Δ :

1- Observations and data collection to determine the average number of car parking basements* for all buildings in the study zone should first of all be done.

2- The space reserved in the basement for car parks and maneuvers = 52% of the LandUse flat area (based on common practice of architects in many engineering consulting companies in Lebanon)

3- The Area needed for one passenger car (parking area and the entry/exit maneuvers) = $(5+(5.5/2)) \times 2.5) \text{ m}^2$ (see figure 2 below - Turning and parking space (Neufert 3rd edition))

4- Observations and data collection to determine the car ownership rate per capita in the study area.

5- Observations and data collection to determine the average household size in the study area. Figure 2 shows Turning and parking space (Neufert 3rd edition (4))

In this article the study area was the "Tripoli" City in Lebanon.

- An assumption of the number of parking basements in residential area was made and it is considered that the number is equal to one.

- The car ownership = 434 cars for 1000 person in Lebanon in 2014 (5)
- The average household size = 5.21 person/house (6)

* parking basements flat area are considered equal to the building plot/parcel area.

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

FINDINGS (RESULTS AND DISCUSSION)

These Design models represent a scientific tool/criteria to calculate and find the optimum road network area to be distributed all over the master plan.

These results and findings of proportionality factors when used, may lead to make the master plan optimistically feasible.

6.1 First Design Model proportionality factors (a)

Results depicted here are limited only for Industrial areas with V/C = 25% (because of numerous land Use types)

Table 5: Coefficient Alfa α in INDUSTRIAL AREAS with V/C = 25% and with minimum trip generation rates

	Land use	Min Trin	V/C = 25%	(Min trip)	
Number of units in the study	Area (mi2)	generated at peak hour	Required Road for	Lane width		
(1000 Sq. feet)		(during one	Min trip	3	3.3	3.6
		hour)	generate (km/lane)	Coeffici	ent α	
140	0.005	16.8	0.32	0.736	0.810	0.883
1,000	0.035	120	2.3	0.314	0.345	0.377
2,000	0.071	240	4.61	0.232	0.256	0.279
3,000	0.107	360	6.91	0.195	0.214	0.234
4,000	0.143	480	9.22	0.172	0.189	0.206
5,000	0.179	600	11.52	0.156	0.172	0.187
6,000	0.215	720	13.82	0.144	0.159	0.173
7,000	0.251	840	16.13	0.135	0.148	0.162
8,000	0.286	960	18.43	0.127	0.140	0.153
9,000	0.322	1080	20.74	0.121	0.133	0.145

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

10,000	0.358	1200	23.04	0.115	0.127	0.139

Source: Eng. Walid AL-SHAAR

Table 6: Calculation of Coefficient Alfa α in INDUSTRIAL AREAS with V/C = 25% and with maximum accepted* trip generation rates

			V/C = 25% (Max accepted* trip generation rate)			
Number of units in the	Land use Area	Min Trip generated at	Required Road for	Lane width		
study (1000 Sq.	(11112)	(during one	Min trip	3	3.3	3.6
feet)		hour)	generated (km/lane)	Coefficie	ent a	
140	0.00502	79.1	1.52	3.467	3.813	4.160
1,000	0.03587	565	10.85	1.479	1.627	1.775
2,000	0.07174	1130	21.7	1.096	1.205	1.315
3,000	0.10761	1695	32.54	0.919	1.011	1.103
4,000	0.14348	2260	43.39	0.811	0.893	0.974
5,000	0.17935	2825	54.24	0.737	0.810	0.884
6,000	0.215	3390	65.09	0.681	0.749	0.817
7,000	0.251	3955	75.94	0.637	0.700	0.764
8,000	0.286	4520	86.78	0.601	0.661	0.721
9,000	0.322	5085	97.63	0.571	0.628	0.685
10,000	0.358	5650	108.48	0.546	0.600	0.655

Source: Eng. Walid AL-SHAAR

* based on assumption that the total road network area should not exceed 35% of land use area

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

(with roads lane width of 3.0 m)

Figures 3 and 4 show the variation of the value of Coefficient α in Industrial areas with 25% volume over capacity ratio and based respectively on minimum and maximum (accepted) rate of trip generation.

Second Design Model proportionality factors (β)

Results depicted here are limited only for residential areas with V/C = 25% (because of numerous land Use types)

Table 7: Calculation of Coefficient Beta β in RESIDENTIAL AREAS with V/C = 25% and with minimum trip generation rates

	Number of	Min Trip	V/C = 25% (Min trip generated)				
		generated	Required	Lane width			
Number of residents	Dwelling	at peak	Road for	3	3.3	3.6	
residents	units in the study	(during one hour)	generated (km/lane)	Coefficient β			
2,000	384	58	1.11	1,174,271	1,046,864	942,660	
3,000	576	86	1.66	1,080,611	963,366	867,473	
4,000	768	115	2.21	1,018,725	908,195	817,794	
5,000	960	144	2.76	973,174	867,586	781,227	
6,000	1,152	173	3.32	937,472	835,757	752,567	
7,000	1,344	202	3.87	908,310	809,760	729,157	
8,000	1,536	230	4.42	883,784	787,894	709,468	
9,000	1,727	259	4.98	862,700	769,098	692,542	
10,000	1,919	288	5.53	844,266	752,664	677,745	
11,000	2,111	317	6.08	827,931	738,101	664,631	
12,000	2,303	345	6.63	813,293	725,052	652,881	
13,000	2,495	374	7.19	800,057	713,252	642,255	
14,000	2,687	403	7.74	787,994	702,498	632,572	

International Journal of Civil Engineering, Construction and Estate Management Vol.7, No.1, pp.147-171, March 2019

15,000	2,879	432	8.29	776,928	692,632	623,688
16,000	3,071	461	8.84	766,717	683,529	615,491
17,000	3,263	489	9.4	757,247	675,086	607,889
18,000	3,455	518	9.95	748,425	667,222	600,807
19,000	3,647	547	10.5	740,176	659,867	594,185
20,000	3,839	576	11.06	732,434	652,965	587,970

Published by European Centre for Research Training and Development UK (www.eajournals.org)

Source: Eng. Walid AL-SHAAR

Table 8: Coefficient Beta β *in RESIDENTIAL AREAS with V/C = 25% and with maximum trip*

generation rates

	Number	Min Trip generated	V/C = 25% (Max trip generated)			
			Required	Lane width		
Number of	Dwelling	at peak	Road for	3	3.3	3.6
residents	units in the study	hour (during one hour)	Min trip generated (km/lane)	In trip enerated Coefficient β km/lane)		_
2,000	384	173	3.32	312,491	278,586	250,856
3,000	576	259	4.98	287,567	256,366	230,847
4,000	768	345	6.63	271,098	241,684	217,627
5,000	960	432	8.29	258,976	230,877	207,896
6,000	1,152	518	9.95	249,475	222,407	200,269
7,000	1,344	605	11.61	241,715	215,489	194,039
8,000	1,536	691	13.27	235,188	209,670	188,800
9,000	1,727	777	14.93	229,577	204,668	184,296
10,000	1,919	864	16.58	224,672	200,295	180,358
11,000	2,111	950	18.24	220,325	196,420	176,868
12,000	2,303	1,036	19.9	216,429	192,947	173,741
13,000	2,495	1,123	21.56	212,907	189,807	170,914
14,000	2,687	1,209	23.22	209,697	186,945	168,337
15,000	2,879	1,296	24.88	206,752	184,320	165,973

International Journal of Civil Engineering, Construction and Estate Management Vol.7, No.1, pp.147-171, March 2019

16,000	3,071	1,382	26.53	204,035	181,897	163,791
17,000	3,263	1,468	28.19	201,514	179,650	161,768
18,000	3,455	1,555	29.85	199,167	177,558	159,884
19,000	3,647	1,641	31.51	196,972	175,600	158,121
20,000	3,839	1,727	33.17	194,911	173,764	156,467

Published by European Centre for Research Training and Development UK (www.eajournals.org)

Source: Eng. Walid AL-SHAAR

Figures 5 and 6 show the variation of the values of Coefficient β in Residential areas with 25% volume over capacity ratio and based respectively on minimum and maximum rate of trip generation.

Third Design Model proportionality factors (Δ)

Results depicted here are limited only for residential areas with an average of 1 parking basement for all buildings (because of numerous scenarios of number of parking basements (numbers ranging from 1 to 6))

The calculations of the coefficient Δ were made for a lot of Population where the number of residents is within the range is from 500 to 100,000 residents

LandUse Area (m2)	LandUse Area (mi2)	Parking Area (m2)	Number of car park spaces	Number of residents	Coefficient Δ
8,085	0.003	4,204	217	500	10,620,497
16,171	0.006	8,409	434	1,000	6,416,468
80,853	0.031	42,044	2,170	5,000	1,991,337
161,707	0.062	84,088	4,340	10,000	1,203,084
242,560	0.094	126,131	6,510	15,000	895,938
323,413	0.125	168,175	8,680	20,000	726,855

Table 9: Coefficient Delta \triangle *in RESIDENTIAL AREAS with 1 parking basement*

International Journal of Civil Engineering, Construction and Estate Management Vol.7, No.1, pp.147-171, March 2019

404,266	0.156	210,218	10,850	25,000	618,009
485,119	0.187	252,262	13,020	30,000	541,290
565,972	0.219	294,305	15,190	35,000	483,904
646,825	0.250	336,349	17,360	40,000	439,136
727,678	0.281	378,392	19,530	45,000	403,099
808,531	0.312	420,436	21,700	50,000	373,376
889,384	0.343	462,480	23,870	55,000	348,380
970,237	0.375	504,523	26,040	60,000	327,025
1,051,090	0.406	546,567	28,210	65,000	308,538
1,131,943	0.437	588,610	30,380	70,000	292,355
1,212,796	0.468	630,654	32,550	75,000	278,053
1,293,649	0.499	672,697	34,720	80,000	265,308
1,374,502	0.531	714,741	36,890	85,000	253,869
1,455,355	0.562	756,784	39,060	90,000	243,536
1,536,208	0.593	798,828	41,230	95,000	234,149
1,617,061	0.624	840,872	43,400	100,000	225,578

Published by European Centre for Research Training and Development UK (www.eajournals.org)

Source: Eng. Walid AL-SHAAR

Figure 7 shows the variation of the values of Coefficient Δ in Residential areas with 1 parking basement.

CONCLUSION

The proposed research plan accounts for an important city planning/control concern.

The knowledge of cities conflicts associated with unplanned urban expansion and population growth, can identify the level of saturation of the city in terms of transportation and lead to identify the main problems.

It is highly recommended to define criteria and design models, to make implementations and integrating the planning of roadway transportation systems into city planning and inter-city planning.

In Lebanon, cities are encountering many social and economic problems in terms of high population density and high unemployment rate.

Besides:

a- The roadway transportation flow is not well distributed

b- Frequent congestions are daily observed in Lebanese road network.

c- In addition to all the above problems, unbalanced infrastructure constitutes a significant issue.

RECOMMENDATIONS

This research should be followed by other research subjects such as:

- The best fit of road network distribution into the city (Simulations)

- Finding the solution of car parkings and the measures to minimize the road friction

- Dissipating the road flow, eliminating the congestion and minimizing the road service delay/queuing time without adding new road sections more than the required as recommended by the design models.

- It is required to identify the needed actions to be enhanced to solve the problem of cities saturation.

- Proposing the preparation of legal urban planning standards to be used by developer/city users.

- Identify the simplest way to move throughout the city, accessing the city center areas, and encouraging people to use the public transportation or Para-transit pseudo systems.

DECLARATION OF INTEREST

The author reports no conflicts of interest. The author alone is responsible for the content and writing of this article.

10. List of Figures

Fig. 1. Comparison of City Highway System and Neocortex Exponents for Quantities as a Function of Surface Area

Source: CHANGIZI, M. A. and DESTEFANO, M. (2009)

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

Source: Ernst, N. (2009) Architects' Data 3rd edition, p. 437

Figure 3: Coefficient a in Industrial areas with 25% volume over capacity and minimum rate of trip generation (0.12)

Source: Eng. Walid AL-SHAAR

Figure 4: Coefficient α in Industrial areas with 25% volume over capacity and maximum* accepted rate of trip generation (0.565)

Published by European Centre for Research Training and Development UK (www.eajournals.org)

Source: Eng. Walid AL-SHAAR

Figure 5: Coefficient β in Residential with 25% volume over capacity and minimum rate of trip generation (0.15)

Source: Eng. Walid AL-SHAAR

Figure 6: Coefficient β in Residential with 25% volume over capacity and maximum rate of trip generation (0.45)

Source: Eng. Walid AL-SHAAR

Figure 7: Coefficient Δ in Residential Areas with 1 parking basement

Source: Eng. Walid AL-SHAAR

Vol.7, No.1, pp.147-171, March 2019

Published by European Centre for Research Training and Development UK (www.eajournals.org)

REFERENCES

Articles:

1. CHANGIZI, M. A. and DESTEFANO, M. (2009) Common Scaling Laws for City Highway Systems and the Mammalian Neocortex, Wiley Periodicals, doi: 10.1002/cplx.

Books:

2. Davidson, M., and Dolnick, F. (2002) Parking Standards, APA Planning Advisory Service Reports, p. 2

3. Institute of Transportation Engineers. (2012) Trip Generation Manual 9th Edition ©, Volume 2 p. 146, 388, 960, volume 3 p. 989, 1024, 1077, 1451,

4. Ernst, N. (2009) Architects' Data 3rd edition, p. 437

Websites:

5. NATIONMASTER , Motor vehicles per 1000 people: Countries Compared, <u>http://www.nationmaster.com/country-info/stats/Transport/Road/Motor-vehicles-per-1000-people</u>, 2014

6. UNDP, MAPPING OF LIVING CONDITIONS IN LEBANON, The Housing Index, D. Relation Between the Housing Index and the Size of the Household, table 71, 1996 www.undp.org.lb/programme/propoor/poverty/povertyinlebanon/molc/housing/D/size.htm

Author: Walid AL-SHAAR Beirut, Lebanon Mobile phone: +96170271243 E-mail: <u>walid-al-shaar@hotmail.com</u>

