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ABSTRACT: In this search we find a degree of best one-sided approximation of the function
f that lies in weighted space (L, ,-space) by interpolation-operators which based on Hermite-
Fejer interpolation polynomial constructed on the zeroes of Stieltjes polynomial E,ﬁ)l and the
product E,E’BlP,fﬂ) for 0<A1<1 and 0<A< % (resp.). Here we denoted of these

interpolation-operators by H."{, (f, x,,) and H,E (f, x,) where x,, is the set of zeroes of E,(i)l

and EX pW (resp.) such that Pna) is ultra-spherical polynomial with respect to w,(x) =

n+i1'n
(1 — x*)*=1/2 The result which we end in it that the limit of differences between H'Y, and
Hy., is zero and Hyt Hyve (respie.  (Lim (Hyt, — Hy ) = 0)(resp. for
n—-oo

HywE (f, x,)).Also in this search we shall prove inverse theorem by using equivalent result
between E,,(f) and E,(f) and inverse theorem in a best approximation case such that both
pervious theorems are in weighted space where the weight function is a generalized Jacobi
(GL) weighted u(x). Finally we try to estimate degree of best one-sided approximation of the
derivative of the function f in weighted space
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INTRODUCTION

Throughout this paper, we use the weight function:

Ug (%) =Ti=o Itk = x|%, 0, =2 =1, -1 =ty <t; < <t,_1 <t,=1|x|] <1 Where t,

is any partition for [—1,1] . For 1 < p < oo the weighted space is define by:

Ly o= {fIf:X — R,such that |f(Du,(x)| <M,a =1} Such that for the
1

functionf, [|fll.e = [ P2 O ug (0P ozx]5 < oo also:

f oo = {Sup{lf(x)ua(x)l,x eX }} <o, X=[-11].In [1] Stieltjes polynomial

E,(l’}r)lwith respect to is satisfying:

1 )] ) m =0,0<m<n+1
J_ 020 P () ER ()% dx{;t 0 me=n+l
And denoted by H,,[f, x]and H,,.+1[f, x] to the Hermite —Fejer interpolation polynomials

based on the zeros of the Stielties polynomials E,(l’?l and E,E’?lP,f’D (resp.) for 0 <A<

land 0 < 4 s% (resp.) and X =[—1,1] with respect to the partition Xy =

{X17 Xomy wer cee en Xnnt, 1 = 1 be a pairwise distinct nodes. We denoted to the zeroes of P,f’u and
E,S'B by x,ﬁi{ = cos(b,(,’:l,)l,v =1,..,nand Eﬁﬂ = cosefn)ﬂ,u =1,...,n+ 1 and we denoted

the zeroes of:

A A A A A
Fn(+)1 = Pn( )ET(H-)l By yiE,Z)n+1 = COS¢1§,2)n+1'v =1..2n+1,
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Also we set ¢(x) = V1 — x? .The Hermite-Fejer interpolation H,,1[f, x] of f with respect to
the zeros of E,S’l)l (x)is admits representation:
L) ()
A Ey un A
Hpyq [f1(x) = Z?:{lf (EIFLT)I,+1) [1- W (x — 8;15,7)l+1)]L%c,n+1(x)-
vn\Sun+1
The Hermite-Fejer interpolation H,,,,4[f, x] of f with respect to the zeros of FZ(,’}
representation:

) (LD
A Fy Yv2n A
Honaa [F100) = B2240 £ (o) 1 - frs Hnes) (= 31 [ o ().
Fyn Opn1)
Where Ly, ,,+4 Is the fundamental Lagrange interpolation polynomial, also Ly, ,,+; are given by:

11(x)is admits

2
Lini1 = =—o———m— k=12,..,n+1
' 51(713 (51(1,7)1+1)(x_€1(¢,%+1)
And:
e
Lv 2n+1 = T, (A - g ,v=12,..2n+ 1.
' Fén) (yz(t,r)L+1)(x_y1(z,r)L+1

For 1 < p < oo the usual modulus of continuity of smoothness if definite as:
w,(f,h,X) = sup ||AL(f, %)l Also the D.T. modulus of continuity of smoothness if

. 0<t<h
definite as:
w,, = sup ||A X Where:
or = 5w 80 f,
0<h<t

Dppf(x) = f(x + ho(x)/2) + f(x — ho(x)/2).

Also, the K-functional is defined by:

K(f,x)pa = Inf{llf — gllpo + tllgllpe:g € Wy} Where Wy, is Sobolev space. For the

function f:X — R the degree of best one sided approximation of the function f € Ly 4(x)

where X = [—1,1] is defined as:

En(f)p,a(X) = lllz 1P + Py llp,ax) (Where Py, is the space of all polynomials of degree n
Prepr,

and By (x) < f(x) < Bf(x),x € X).

And degree of best approximation of f is defined as:

Ex(Hpacxy = lj_lz If = Pallp,ecx) -
PP,

AUXILIARY RESULTS

Theorem 2.1:[1]
LetA € [0,1],1 <p < oo,u € L, and let f be a continuous function on [—1,1] then:

I (Hae1 [F1G0) = FEIU@)lp < 0 (f, 5.

If we take limit when p — oo get the following theorem:

Theorem 2.2:
LetA € [0,1],1 <p < 0, u,(x) € L, and let f € L, ,-space on [—1,1] then:

1
1 Hnsa [F1(0) = fF (O leo,e = 1 (Hna [F1G0) = f D u) oo < Cwo(’i,a(f,;)

Proof:
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By using theorem 2.1 and properties of limit we have:
1
lim |(Hn41 [f100) = FO)u@)l, < Jim we (f, )
| (Hn41[F1C0) = £ O u(x) oo S hm( sup  {sup {8ypn(f,%)3})

0<h<n—1 xeX
= sup {sup {llm n A, (f,2)}}
0<h<n—1 xeX
<c sup {sup{Byn(f,2)}}
0<hsn‘11 xXEX

= C(‘)o(g,a (f' ;)

Theorem 2.3:[1]
Let A€ [0,1],1 <p < oo, (up?1=2Y(x) + 1) € L, and let f be a continuous function on

[—1,1] then:
I (Hana1 [F1G0) = FEDU@l, < 0 (2.

With the same way of proof's theorem 2.2 we get:

Theorem 2.4:
Let A€ [0,1],1 <p < oo, u(x)(p?*"2P(x) + 1) € L, and let f € L, ,-space on [—1,1]
then:
1
I (Han+1[£100) = fFOIU) e < c00 o (2.
As before mention we construct the operators H,*l:l (f, xn) and HywT, (f, xy,) as:

HyE (f %) = Hpaa [f100) £ 1 Hnaa [F100) = £ OO loo ey
Also

Hyer (f %n) = Hanga [F106) £ 1Han 1 [F100) = £ OO oo axy-

Theorem 2.5:
For f € Ly, ,-space and 4 € [0,1],1 <p < o0, u,(x) € L, on [—1,1] we have:
Ho (f ) < () < Hiztyx € [-11]
Proof:
Hyty = Huaa [F100 + 1Hns1 [F1060 = F ) oo,y
= Hya [f100) + [[Hn11 [F1G0) = F ) lloo )
2 Hypa [f1(6) + [Hnya [f100) = f(X)]
= Hna [f100 + |f (0) = Hnaa [F100]
2 Hywa[f1(6) + f (%) = Hpya [f1()
= f().
With the same way we have:
Hyo1 (f ) < f(x)
Also with the same way for the operator H,~T, (f, x,,) we have:
Hyne (f,%0) < f(0) < Hppip, x € [-11].
Theorem 2.6: [1]
Let 2 € [0,1] and let f be a continuous function on [—1,1] then the uniformly for x € [—1,1]

lim, [Hya [£100) = GO = 0,

n—-oo

Theorem 2.7: [1]
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Let A € [0,1] and let f be a continuous function on [—1,1] then the uniformly for x € [—1,1]

lim, [ Hypya[£1(0) = (O] = 0.

n—-oo

MAIN RESULTS

Theorem 3.1 :( Direct Theorem By using Hn+1 Operator)
For the function f € Lpa _1,1]-Space and H. H»E -operator we have:
En(f pa < o080 (f,7).
Proof:
By the theorems 2.5 and 2.2 we have:
n(f x)pa = ||Hn+1 n+1”pa
< [1Hp41 [F1G0) = F O loo + 1 Hpgt [F1(x) = f(x)”oo,a”p,a
= 2¢p||Hn+1[f100) = f ()0
< 26,084 (£,3) = o (f,).
Theorem 3.2 :( Direct Theorem By using HZn+1 Operator)
For the function f € L, 4[1,1)-Space and HZn+1 operator we have:
En(f 0)pa < Cp0% o (o 2).

Proof:
By the theorems 2.5 and 2.4 we have:

En(f,%)pa < ”H;L - H;:{;”p,a
< MHzn41 [F1G) = fFOllooa + 1Hzna [F10) = fF @ lwe]
= 2Cp||H2n+1[f](x) — )0
< 26,084 (£,3) = ol o (f,3).

Now, we discuss the uniform convergence of the H.", and H,.7{, -operators as the following:
Theorem 3.3:

LetA € [0,1],1 <p <oo,u € Lyandlet f € L, 4-1,1 then the uniformly convergence for

€ [-1,1]is:

lim |Hpty — Hyoa| = 0.
n—)OO
Proof:

As in proof of theorem 3.1, properties of limit and theorem 2.6, we get:

tim [Hyly = Hyo | = lim |20 Hpa [F100 = £ GO lleoe

n—)oo Tl—>00

=2 Uim [Hois [F16) = F Dl

= 2 lim sup (| o [£160) = FGOI}
= 2 5up (lim | 1) — FGO)
—2 @{(%300: 2(0) = 0}.

x€X
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With the same way we can prove the following theorem:

Theorem 3.4:

LetA e [O, %] ,1<p<ow,u€lyandletf € Lpar-11] then the uniformly convergence for
x € [-1,1] is:
lim |Hyni1 — Hynpa| = 0.
n—-oo
Theorem 3.5: [2]

For f € Ly[_1,11, 1 < p < o we have:
En(fo < En(fo < 2En(f)eo -
With the same way of prove above theorem we can prove the following theorem:
En(Fp < En(f)p < 2E.(f)y -

For f € Lpj—1,1),1 < p < o we have:
En(f)p,a < En(f)p,a < ZEn(f)p,a .
Proof:

Since fu is bounded function and by using above theorem we get:

En(f)p,a = n(fu)p < En(fu)p = En(f)p,a
And:

En(f)p,a = En(fu)p = ZEn(fu)p =2E,(Hp.a-
The following theorem is proved in [4] for Hermite-Fejer polynomials by using zeros of first
kind Chebyshev polynomial T,,(x) = cos(ncos™'x),-1<x <1

And:
X = cosOy, 0, = %,k =12, ...,n.
Now, we shall prove same theorem by using zeroes of Stieltjes polynomial 57(1?1 :

Theorem 3.7:
For f € Ly q(-1,1],1 < p < oo we have:

”f - Hs”p,a + ”f - Hsllp’a lfp =1,00

”f - Hs”p,a if 1< p <

Before, we prove the above theorem we needed to prove the following lemmas:
Lemma 3.8: [4]

Letf,g € Lyq, (1 <p < ),6 > 0 then:
Tk(fr 6)p,a < Tk((f - g)r 6)p,a + Tk(g' 5)p,a-
Lemma 3.9: [4]

Letf,g € Lyq, (1 <p < ),6 > 0 then:
T (f, 6)p,a = C”f”p,a-
Lemma 3.10: [4]

If f,f €Lpa (1<p<),§>0then:
w(f, 8pa < S|If]l .

Lemma 3.11: [4]
Let f € Ly 4(x) such that (1< p < o) then:

T(f,ACD)pa < - Tio
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Es(f)p,a + Es(fv)p,a ifp=10

Es(flpa if1<p<o

c
K(f; %; lp,a; wzl),a) < ;Z?=O

Lemma 3.12: [4]
Iff €Lyq (1<p<o0),and0< &< §then:

Tk(fr 8)p,a < Tk(f: 6)p,0{-
Proof of theorem 3.7:

By using lemmas (3.8), (3.9) and (3.10), we get:
1 1 1
(f, E)p,a < 7((f - g)'g)p,a + 1(9, ;)p,a

1.,
< C“f - g”p,a + n ”g”p,a

=K(f, %: Lp,a: wzl),a)
Now, by using lemma (3.11) we get:

Es(f)p,a + Es(f)p,a ifp=10»

Es(f)p,a ifl1<p<o
”f - Hs”p,a + ”f - Hs”p,a ifp=10»

”f - Hs”p,a if 1< p<®
By using lemma (3.12) we have:

1 1
T(f»A(': E))p,a < T(f: E)p,a
And the proof is complete.

1 c
(f, Z)p,a < n é=0

< = n
<<yn

Theorem 3.13:
For f € Lpg[-11),1 < p < o and H,’;'fl-operator we have:

Es(f)p,a + Es(f)p,a ifp=10»

Es(f)p,a ifl1<p<o

1 c
T(f» ;)p,a' < n 1sl=0

Proof:
By using theorems 3.6 and 3.7 we get:

Es(f)p,a + Es(f)p,a ifp=10

Es(flpa if1<p<c
Now, we try to estimate a degree of best one-sided approximation of the derivative of the
function f € L, 4-11,1 Sp <.
The following theorem is proved in [3] for the function f € C|[a, b] by using trigonometric
polynomials in this part we shall prove same theorem for f € L, ,[—4,1) by using algebraic
polynomial.

1 c
T(f: Z)p,a < ;Z?=0

Lemma 3.14: [3]

For each real p three is a constant M,, with the property that for each sequence 0 < u;, <
Upyq < - <y, such that 2 < u;/u;_y <4 fork <i <1, and for each positive decreasing
function ¢ (u) defined for u > 0(or at least for all values u; and allu = 0,1, ...),
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Ll b)) < My S, (e DPT(n).

Theorem 3.15:
For f € Lygi-11p1 <p <candr =1, Y7 n"'E,(f) < 4+
Then £ exists and is continuous, and its degree of approximation satisfies

E(fD<e ) KB,
[n/2]
The constant M, depends only on r..
Proof:
If P, (x) is the polynomial of best approximation of degree k for f(x) then

FG) = Pu@) = ) {Pyin () = Py, ()
i=1
This series converges uniformly. The series obtained by formal differentiation

£ = PO ) + Z{p(? @ -PY, @}, 1<s<r

Also, converge unlformly as a consequence, since the norm of the i th term does not exceed
(i.e. |f||Pn(r) < Mn").
p

280 [|P iy (0) = Ppim1, (0|, < 2.2 n°¢(27 ) Where ¢ (n) = E, ().

And the convergence of the series Y. (2:"1n)"¢(2¢"1n) follows from lemma 3.14, by now a
theorem about uniformly convergent series £ (x) exists and is equal to the sum of the last
series this proving the first part of the theorem.

For the second part, we can now write

||f(r)_PrE7‘) _”(f(r) P(r) u(x)” Z”(Ppr) P, )u(x)”
B2 P -],

_H@@ Pl @)
™ _ (r)
_Zl 1||P 21 1n|p
< X227 ) ¢ (2 n)
BY lemma 3.14, the proof is completes.

Theorem 3.16: [5]
For f € L,-space, 0 < p < oo and positive integer k, there exists an algebraic polynomial
P, of degree < n such that:

En(f)p < ”f - Pn”p < Cry, (f n_l)p

Theorem 3.17:
For f € L,,-space,0 <p < oo and positive integer k, there exists an algebraic
polynomial P, of degree < n such that:

En(f)p,a ”f Iz ”pa Ckwk (f n_l)pa
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Proof:
By using theorems 3.16 we get:

En(f)p,a <|lf - Pn”p,a = I(f - Pn)(‘)a”p < Ckw]((p(f(‘)a'n_l)p

< et (f,n Yy
Theorem 3.18:
Forf € Lygi-11,1 < p < o0 and H,’;'fl-operator we have:

En(f X)pa < 20 = Dol o(f,2).
Proof:
By using theorem 2.5, Bernstein enquality and theorem 3.1 and since:
Ho (f, %) < f(x) < H'FL L so we have:
Either Hyyy(f, %) < f () < Ay or Byfy (F, ) < f00) < Ay
So we have:

En(f,0)pa < |35 (F20) = By (F 0
= ||(Hn+1(f x) — Hyoy (f, x))”
< (2n = D||HZ, (f, 00 - n+1(f x)”
< 2n - Dl o (f.).
The other cases and by using theorems 3.15, 3.17 we have:
En(f.0pa = En(f,0)pa < |[fOO-HL(F |,
= £ ) = Ansa [F1(0) = (lIf () = Hn+1[f](x)lloo,a5||p,a
= ||/ () = Hpalf] (x)ll
< ck Lz K w (f,n‘l)p,a-
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