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ABSTRACT: In this paper we propose a hew method called calibrating auxiliary differential
equation to establish exact solutions for the Benjamin-Bona-Mohony equation. Among the
obtained exact solutions are solitary and periodic wave solutions of nonlinear evolution equations.
The proposed calibrating auxiliary differential equation method is straight forward and powerful
mathematical tool that could be used for solving other nonlinear partial differential equations.
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INTRODUCTION

Nonlinear evolution equations (NLEES) play an important role in science because it is used to
model various complex phenomena. Thus, obtaining and analyzing the exact solutions of these
equations contributes to describe and understand the dynamic aspect of the phenomena under
consideration. Among the well-known NLEEs which attracted many researchers is the Benjamin-
Bona-Mohony (BBM) equation.Many different approaches have been proposed to find the exact
solutions of the NLEEs equations and in particular to BBM equation. Among these methods that

!

have been widely used are: F-expansion method [6], (%) expansion method [7], the sine-cosine

function method [8-9], the tanh-function method [10], the exp-function method [11], the Jacobi
elliptic function method [12], auxiliary equation method [13-15].

In this paper we propose a new efficient method that is used to find the exact solutions of the BBM
equation. The method, that we call calibrating auxiliary differential equation, is based on the
auxiliary differential equation. The remaining of the paper is organized as follows. In Section 2
the new method is described, followed in Section 3 by its applications to obtain exact solutions of
the BBM equation. Section 4 shows the graphics of some obtained exact solutions. Finally, Section
5 concludes the paper.
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The Calibrating Auxiliary Differential Equation method
In the following, we introduce the main steps of the calibrating auxiliary equation method
Step 1: Suppose that a nonlinear partial differential equation is given by

F(u, U, Uy, Uy U Unets Ut Ugoer U e o) = 0, (2.1)
where u = u(x, t) is an unknown function, F is a polynomial in u and its partial derivatives in
which the highest order derivatives and nonlinear terms are involved. Using the following
generalized wave transformation:

u(xr 3’; t) = u(f);f = klx + th + EO! (22)
where k4, k, and &, are a constant, Then Eq. (2.1) is reduced to the following ODE:
Plwkyu' kpu' k2w k2u”, . ... ) =0, (2.3)
where (’ = d%)and P is a polynomial in u and its total derivatives.

Step2. We suppose that Eq. (2.3) has the following formal solution:

u(®) = IV, a;(F©)' (2.4)

where N is a positive integer, a;(i = 1,2,...) are constants, and the function F(¢) satisfies a
nonlinear ordinary differential equation:

£ F© = (4o + A F(O)VBo + BiF Q) + B,F2(2) (2.5)

Step3. Determine the positive integer N in (2.4 ) by balancing the highest order derivatives and
nonlinear terms in Eq. (2.3 ).
Step4. Substituting (3.4) along with (2.5) into (2.3) and equating the coefficients of

VBo + BiF(E) + B,F2()(F(€))’(j = 0,1,2..) to be zero, yields a set of algebraic equations for
Ao, Ay, Bo, By, By, kq, ky, & and a;(i = 0,1,2,..N).

Step5. Solving these algebraic equations by Maple or Mathematica, we get the values of
Ao, Ay, By, By, By, ky, ky, & and a;(i = 0,1,2,..N).

Step6. Substituting the values Ay, A4, By, By, B, into (2.5) , and then solving the resulting a
nonlinear ordinary differential equation we can obtain the F(¢).

Step7. Substituting the F(§),kq, k5, &, and «a;(i = 0,1,2,..N) into (2.4) we can obtain the
exact solutions of Eq. (2.3).

3 Exact solutions of the BBM Equation
In this section, we apply proposed method to study well known Benjamin-Bona-Mohony equation.
Let us consider the following BBM equation:

Up + OgUy + S1UU, — OplUyyy = 0 (3.1

By balancing (uu,) and (u,,;) in Eq (3.1) we obtain (n = 2).
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Therefore, the solution of Eq (3.1) is of the form :
u(® =ulx,t) = ay + a; F(&) + ayF2(&), & =kix +kyt + &, (3.2)

where F(&) satisfies Eq (2.5), a,, @, and a, are constants to be determined later.
Substituting Eq(3.2) together with Eq(2.5), the left - hand side is converted into polynomials in

JBo + B{F(8) + BZFZ(S)(F(E))j(j = 0,1,2,3,4). We collect each coefficient of these resulted
polynomials to zero, yields a set of simultaneous algebraic equations for Ay, A;, By, By, Bz, ki,

k,, &, ay, a; and a,. Solving these algebraic equations using algebraic software Maple, we
obtain following.

Case 1:
kA((S)RZO»:S‘l%{:AL 32:0,;‘1:k1, ko =ky ag =ag, a1 =ay, a; =0, & =4,
_ (k2t0pk1+ap01kq _ @101
Bo = ( 8,k k2A2 )' B, = (352k1k2A§) (33)
Substituting (3.3) in to (2.5), we have
d
d_fF(f) =A1F($z) Bo+B1F(f) (3-4)
Using Maple, some solutions of Eq (3.4) are:
1)if By =0,
F1.1(§) = c.exp(A1/Bo€) (35)
2) if l;o = O, /41 * 0, 131 * 0.
4
F12) = e (3.6)
3)if By <0, B; #0.
By 2 (A1
Fs(@) == (2) [1 + tan? (2 =o€ + )| (37)
4)if B, >0, B, # 0.
exp(Al\/B—O(E+c))

Fia(®) = —4(2) (3.8)

Substituting (3.3) and (3.5) into (3.2) we find
2 S 1 61 1
uy,1(§) = ap + ajcexp <A1J<—k 12:;;;:; u )f) (3.9

where & = kyx + kyt + &,
In particular setting

ki=1Lk,=1, ay=1a,=2,§=0,8,=1,6,=0,6,=2,c=1,4, =1
we find

(exp(Al\/B—o(f+c))+1)2

ul (&) =1+ 2exp(é); E=x+t (See Figure 1). (3.10)

Substituting (3.3) and (3.6) into (3.2) we find

Uy 2(§) = ap + a4 < :

— >(f+c)2

352k1k2A%

(3.11)

2
1
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where & = kyx + kyt + &,
In particular setting

ki =1k, =-2,ap=1a,=6¢,=0,8,=1,6,=1,8,=1,c=0,4, =1
We find

u,(§)=1- g; E=x—2t (See Figure 2). (3.12)

Substituting (3.3) and (3.7) into (3.2) we find

wy3(6) = @ — 3y (LRELELN ) 11 4 tan? (A— J ~ () (€ + c)> (3.13)
where & = kyx + kyt + &,
In particular setting
ki=lky=—-3a0=1a,=3§=08=186=18=—1c=04=1
We find
uf 5(§) = 4 + 3tan? (— g), E=x-3t (See Figure 3). (3.14)
Substituting (3.3) and (3.8) into (3.2) we find
Uy 4(§) = ap — 124 (kzwzljngalkl) (3.15)

2
(oo (o o)
where & = kyx + kyt + &,

In particular setting

kl = 1,k2 = 1,“0 = 1,“1 :9,50 = 1,60 = 1,61 = 1,62 = 3,C: _1,A1 = 1
We find

36exp(§—1) .
ud, (&) =1 ~ DI E=x+t+2" (See Figure 4) (3.16)
Case 2:
Ay =Ap, Ay =A1,By =B1,By = 0,ky = ki, ky =k, a0 = ag,a, =0,§g =&, (3.17)
B _ (k2+80k1+a081k1—262k2k%AOA131) A = (362k1k2A%B1)
0~ 52’(2]{%14% ! 1= é\1

Substituting (3.12) in to (2-5), we have
F© = (4o + AF©O)VBo + BF @) (3.18)

Using Maple, the solutions of Eq (3.18) are:
1)if Ay=0,By=0,B; # 0,4, # 0.

4
FZ,l(f) = BlA%(f'FC)Z (319)
2) |f AO = O,BO < O,Bl * 0,
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Fy(8) = — (i—) ll + tan? <@ (€ + c))l (3.20)
3)4, = 0,B, > 0,B; £ 0,

B EXp(Al\/B—O)
; g By _exp(anB) 3.21
2,3(6) (Bl) (exp(Al\/B_o)+1)2 ( )
4) if By, =0,4;, # 0}14331 >0,
1
Py () = i_: tan? [% \/%*1 &+ c)] (3.22)
5 if B, =0,4; # 0)‘4231 <0,
1
2
AgB1
exp<A1 " (f+c)>+1
" 1
Fas(® = — (%) -

exp(Al —Agfl(f+c)>—1

6) |fA0 = BO’Al = Bl’Al * O,
_ AgAi(§+c)*-4

Foe(§) = = mteror (3.24)
7)|f (AOBl - AlBO) = 0,A1 * 0, Bl * O
AZBy(§+c)%—-4
Fr(®) =~ o (3.25)
8) if (M) =A, = 0,4, #0,B, # 0,
A
B, A A
Fas(®) = = (32) + (5) tan? (2B +0)) (326)
. AgB1—A1B
9) if (%1”) = —A, < 0,4, # 0,B, # 0,
(2921) exp(Asy/Br (€ +6))-1] +4Boexp(41 /A1 (€ +0))
F2,9(S() =- p) (3.27)
Bl[exp(Al\/A—l(f+c))+1]
Substituting (3.17) and (3.19) into (3.2) we find
_ 128,k 1k, A%B, 1
Uz1(§) = ap + ( 518,47 )(f+c)2 (3.28)
where & = kyx + kot + &.
In particular setting
k1 = 1,k2 = 2,“0 = _1,50 = 0,50 = _1,51 = 52 = 1,C = O,AO = O,A1 = 3,B1 =1
we find
ud, () =-1+ ;—j; E=x+2t (See Figure 5) (3.29)
Substituting (3.17) and (3.20) into (3.2) we find
2 —
(6) = @ — (2R [1 + tan? (—AWZ G c)>] (3.30)
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where & = kyx + kyt + &,
In particular setting
kl—lkz 1(10— 3,60:0,60:1,61:82:1,C:0,AO:0,A1:1,31:_1

We find
u ,(§) = 3tan? G E); E=x+t (See Figure 6) (3.31)
Substituting (3.17) and (3.21) into (3.2) we find

_ 128,k1k2A2B, eXp(A1\/B_o(E+C))
Up3(8) = @ — (22 )(exp o] (3.32)
Where
E=kix + kyt + &,
In particular setting
ki =1k, =1ay=1¢& = =16=16,=3,c=-1,4,=04,=1,B, =2
We find
ud;(§) =1- 36 —PE-D . E=x+t+1 (See Figure7) (3.33)

(exp(§-1)+1)2’
Substituting (3.17) and (3.22) into (3.2) we find

02 4(6) = g + (AN a2 [ 22 BB (¢ ) (339

WherE‘f = klx + kzt + fo,
In particular setting

k1 = 1,k2 = 1,“0 = _1,50 =7T,60 = 1,61 = 1,62 =5,C=0,A0 = 1,A1 == 1,B1 = 1
We find

Juy

ud (&) =-1+ %cot2 Gf); E=x+t+m (See Figure 8) (3.35)

Substituting (3.17) and (3.23) into (3.2) we find
2

AgB
—%{f+6)>+1

exp
382k1kpAgA1B <
g (6) = g — (Lakztonsen)
! exp<A1 —Ag—lfl(f+c)>—1
where & = kyx + kyt + &,
In particular setting
kl = 1,k2 = 1,“0 = 2,50 = 0,60 = 61 = _1,62 = 1,C = O,AO = 1,A1 = _1'Bl = 1

we find
_ 2
us(§)=2-3 (:zgg_%) ; E=x+t (See Figure 9) (3.36)
Substituting (3.17) and (3.24) into (3.2) we find
. _ (382k1k2By AgA2(E+c)%—4
w,6(§) = @y — (FHHER) (RHEEE) (337)

where & = kyx + kyt + &,
In particular setting
ky =1k, =1 a,=12¢ = =1,6,=18=—=,c=1,A; =24, =3,B, =3
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We find
upe(§) =1- 186(?—:1))2:% E=x+t (See Figure 10) (3.38)
Substituting (3.17) and (3.25) into (3.2) we find
Uz 7(§) = ap — (382;11](2) (A§B(E;i§32_4) (3.39)

Where f = klx + kzt + 50,
In particular setting
kl = 1,k2 = 1,a0 = 4‘,60 = 0,60 = 1,61 = 1,62 = 1,C = O,AO = 2,A1 = 1,B1 = 1
We find
2_
ud, (&) =4- 6@; E=x+t (See Figure 11) (3.40)
Substituting (3.17) and (3.26) into (3.2) we find

38,k k,ByA>
u2,8(€)=a0+<—2 152 > 1>X
1

(5 (e (4 [ (2525 s +0)

(3.41)

(46)
Where g = klx + kzt + fo,
In particular setting
T
k1 = 1,k2 = 1,a0 = 3,50 =E,60 = 1,61 = 1,62 = 1,C = O,AO = 1,A1 = 1,B1 = 2
We find
ud g(&) = 3tan? G)' E=x+t +§ (See Figure 12) (3.42)
Substituting (3.17) and (3.27) into (3.2) we find
38,k ko By A2 (A2f1)[eXp(A1JA—1(f+c))—1]2+4Boexp(A1JA—1($+c))
Uz,9($) :ao+( S ) - 7
1 Bl[exp(Al\/A—l(f+c))+1]

Where § =kix +kt +8 5 A= (AOBl_AlBO)

A1
In particular setting
k1 = 1,k2 = 1,“0 = 2,50 = 0,50 = 1,51 = 1,52 = 1,C = O,AO = 1,A1 = 11B1 =1

(3.43)

We find

(exp(§)—1)?+8exp(§) .
udo(6)=2-3 [(exp [exp(f)ﬂ]e;p ]; E=x+t (See Figure 13) (3.44)

Case3 :
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Ap=0,41 =A1,B; =B3,B; = 0,ky = kq,ky = ky, a0 = apg, a1 = 0,85 =&

(3.45)
_ k2+60k1+a061k1 _ 1262k1k2A%B2
Bo = ( 48,k k2 A2 )’ @2 = ( 5, )
Substituting (3.45) in to (2.5), we have
d
[ ) = AF()VBo + BaF*($) (3.46)
Using Maple, some solutions of Eq (3.46) are:
l) |f Al * O,BZ * O,BO = O,
1
F. = 3.47
1) = o) (347)
2)if B, > 0,B, >0,
ZeXp(—Al\/B—O(E+c))
F = 3.48
3208) = (@, copomy ot 10) (3.48)
3)if By<0,B,>0,4, #0,
F35(8) = — = (3.49)
—B52
tan(Ah/—Bo(E+c))\/Bo(tanz(AlJ_—%(&C))H)
Substituting (3.45) and (3.47) into (3.2) we find
2
_ 128,k k,A%B, 1
Uz (§) = ap + ( 5 ) I(A1\/B—2(f+c))l (3.50)
Where g = klx + kzt + fo,
In particular setting
kl = 1,k2 = 1,“0 = 1,{'—0 = 3,60 = 1,61 = 1,62 = 1,C = O,A1 = 1,B2 = 1
We find
ud () =1- f%; E=x+t+3 (See Figure 14) (3.51)
Substituting (3.45) and (3.48) into (3.2) we find
_ 128,k1k,A2B, 2exp(—-A1y/Bo(§+0))
Us,2 (E) =@+ ( 51 ) I—(g—§)+exp(—2A1\/B_0(f+c)) (352)
Where E = klx + kzt + 50,
In particular setting
=1k =lay=18=08 =16 =208 =,c=0A4 =1B,=4
We find
ud, ) =1+ 24%; E=x+t (See Figure 15) (3.53)
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Substituting (3.45) and (3.49) into (3.2) we find

[

1262k1k2A§32) I -1

_I

|

u3’3(€)=a0+( 5 I
1 -B;

ltan(Am —BO(E+C))\j (tanz Alx/j(f"'c) +1 J

2

where & = kyx + kyt + &,
In particular setting

ki =1k, =1,a0=1¢ = %'50 =1,6,=26; = _i:C =04,=1B,=4
We find
2(2&6-2)+1
u§3(f)=1—6w; E=x+t+= (See Figure 16)  (3.55)
’ CotZ(ZE—E) 4
Case4:
AO = AO!Al AlﬂBZ - BZJBl BO - BOﬂkl - kl' k2 - kZ'EO - ’SO

462k2A§k1Bo+852k2k§32A3—50k1 ko 246,BykokqAgAq
aO = ) a]_ = )
k161 61

1268,B,k kA2
azz( 22211)

2A032

81
(3.56)
Substituting (3.56) in to (2 .5), we have
d A
SR = (Ao + AF©) [Bo+ (22) F(©) + B,72(0) (357)
Using Maple, some solutions of Eq (3.57) are:
1)if Ay =0,By=0,4; #0,B, # 0
1
F, = 3.58
BORS vy (3.58)
2)if Ay =0,B, > 0,B, > 0,
_ —ZBoexp(—Al\/B_O(f+c))
F4’2 (f) N Bz—Boexp(—ZAl\/B—o(E+c)) (3'59)
3) if AO = O’BZ > O,BO < O,
- 2 =
F4l3 (g) _ Bo[l+tan (A1 Bo(E+C)):| (360)
tan(Al,/—Bo(&c))\/—BoBz[1+tan2(A1,/—Bo(§+c))]
4)if Ay #0,B, # 0,4, # 0,(—A%B, + A2B,) = A, > 0,
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ZJA—Zexp(—JA—Z(E+c))—A0 exp(—z\/A—2(5+c))+AoBz

4'4(5) Al[Bz—eXp(—Z\/A—z(f‘i‘C))] (3 6 )
5)if Ay # 0,B, # 0,4, # 0, (—A%B, + A%B,) = —A, < 0,
7 (f) A2+A2tan2(\/A—2($+c))+A0tan(\/A—2(f+c))\/AZBZ(1+tan2(\/A—2(€+c))) (3.62)
4,5 = - :
Altan(JA_z(§+c))\/Asz(1+tan2(\/A_Z(§+c)))
6) |f AO * 0, BZ * O,Al * 0, (_A%BZ + A%Bo) = 0,
=t A
Fie(§) = [A1 NS Al] (3.63)
Substituting (3.56) and (3.58) into (3.2) we find
1283Bokok1 A%
u (E) _ (452k2A%k%Bo—60k1—k2) < : 212 : 1) (3 64)
M 161 (4B +0))” '

Where E = klx + kzt + fo,
In particular setting
kl = _1,k2 = 1,50 = _1,60 = 2,61 = 62 = 1,C = 1,A1 == 1,A0 = O,BO = O,BZ = 4

We find
ug,(§) = —1—(&%)2; E=—x+t—-1 (See Figure 17) (3.65)
Substituting (3.56) and (3.59) into (3.2) we find
2
_ 482’(214%’(%30—60](1—](2 125232]{2]{114% _ZBOeXp(_Al\/B—O(f'I-C))
(&) = ( e )+ ( - ) lgz_goexp(_ul grravey R

where & = kyx + kyt + &,

In particular setting

ki =1,k,=-1,§=008,=6,=8,=1,c=0,4;, =1,4,=0,B, = 4,
B, = exp(—25)

We find
0 _ _ 768exp(—25)exp(—4§) |
us2(§) = —16 (exp(-25)—4exp(-4£))>’
Substituting (3.56) and (3.60) into (3.2) we find

_ (482k,A%KIBy—80k1—k; 128,Bykok, A2
Uy 3(8) = ( P + 5
2

E=x—t (See Figure 18) (3.67)

—BO[1+tan2(A1\/——Bo(f+C))]

X (3.68)
tan(Al,/—Bo(f+c))\/—BoBz[1+tan2(A1,/—B0(f+c))]
Whel‘e E = klx + kzt + 50,
In particular setting
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k1 = 1,k2 = _1,50 = 0,60 = 61 = 1,62 = _Z,C = O,Al = 1IAO == O,BO = _9,B2 = 4
We find

ud5(8) = —72 + 216 (%_(;?) E=x—t (SeeFigure 19) (3.69)
Substituting (3.56) and (3.61) into (3.2) we find
Uy 4 () = (462k2A§kao+86;1k;1k§BzA%,—60kl—kz) " (3.70)

N (248282k2k1A0A1) _ ZJA—Zexp(—\/A—Z(E+c))—A0exp(—Z\/A—z(f+C))+AoBz
81 Al[Bz—exp(—Z\/A—z(€+C))]

n (125232k2k1A§) l_ Zx/A—zeXp(—\/A—z(fH))—AoeXp(—Z\/A—z(€+C))+Aole2
&1 Al[Bz—exp(—Z\/A—z(§’+c))]
where & = kyx + kyt + &,
In particular setting
ki =1k, =1,6,=06,=1,6,=-1,8,=2,c=0,4;, =3,4,=1,B,=1,B,=5

We find
0 __ap (25+54exp(=48)+exp(=89)) | _ .
ug4(§) = —30 (oxp(_26)_5)? ; E=x+t (See Figure 20)
(3.71)
Substituting (3.56) and (3.62) into (3.2) we find
_ (462k,A5KkZBo+88,kkiB,AG—80k1—k, 2468,Bykyk1AgAq
15§ = ( e )+ (Boelelalatots) o (372)

A, +Atan? (\/A_Z(E+c))+A0tan(\/A_2(f+c))\/Az B, <1+tan2 (\/A_Z(E+c)))
Altan(\/A—z(f+c))\/Asz(1+tan2 (\/A—z(f+c)))

 [128,Bykyk A2
+( 22211)><
81

- A, +Aytan? (\/A—Z(E+c))+A0tan(\/A—2(f+c))\/A2 By <1+tan2 (\/A—z(f+c)))

Altan(\/A_z(f+c))\/A232<1+tan2(\/A_Z(E+C)))

where & = kl}c + kot + &,
In particular setting
kl = 1,k2 == _1,50 = 0,60 == 1,61 = 1,62 == 1,C = O,Al = Z,AO = Z,BO :i,Bz = 1

12

We find

ugs(§) = —12 (%) E=x—t  (SeeFigure?21) (3.73)

Substituting (3.56) and (3.63) into (3.2) we find

48,k A2k2By+88,k k2 By A% —8ok1—k;
U4‘6(E) = ( k161 ) + (374)
+ (245232k2k1A0A1) [ -1 AO]
51 A1[By(§+¢) Ay
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(125232k2k1A§

61
where & = kyx + kyt + &,

In particular setting

2
-1 AO]

A1JB(E+0) A,

kl = 1,k2 = 1,60 =2,60 = 1,61 = 1,62 = 1,C= 3,A1 = 1,A0 = 1,BO = 1,B2 =1

We find
2
uge(f) =-=2 (f(;fj)"j); E=x+t+2 (See Figure 22) (3.75)
4 Table Graphics
Figure 1 Figure 2 Figure 3
u?1(§) =1+ 2exp($) 24 ¢
" E=x+t w2 =1- I3 up3(§) = 4 + 3tan? (— 5)
§=x—2t E=x—-3t

LUME

2537
230
15507

5514

Figure 4 Figure 5 Figure 6
36exp(§-1) . 24 1
up,(§) =1 —mﬁﬁ uz1(§) = —1 += ug,(¢) = 3tan? (Ef)
E=x+t+27 E=x+2t E=x+t
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Figure 7 Figure 8 Figure 9
uz3(§) ; ) ud (&) =—-1+ %cot2 G f) ugs(§) = ,
_36—xp61) _ exp(=§)+1
[1 36 (exp(f—1)+1)2] f =x+t+m [2 -3 (m) ]
E=x+t+1 E=x+t

Figure 10 Figure 11 Figure 12
2_ 2_ f
uze(§) =1-— 186(5;11))2 . uy,(§) =4 - 6@ uyg(¢) = 3tan® (E)

2
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Figure 13

u8,9 &)
=2

3 [(exp(§) — 1)* + 8Bexp(¢)]

lexp($) + 1]
E=x+t

Figure 14

6
u?,s(f) =1 —?
E=x+t+3

Figure 15
ug,s €3]

— 1424 exp(—4¢)

(exp(—4¢) — 1)?
E=x+t

Figure 17
up (6 =-1 G
E=—x+t—-1

Figure 18

u(2),4(f)
=-16
768exp(—25)exp(—4¢)

- (exp(—25) — 4exp(—4§”))2
E=x—t
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BT
2000
Al
Q)

AR,

1

Figure 19 Figure 20 Figure 21
u(3),4(f) =—-72+ ug,(§) = ugA(f) =
1+tan?(-3¢) o (25+54exp(=48)+exp(-89)) 2tan?(V/3¢)+3
216( tan2(-3¢) ) 30 (exp(—4¢£)-5)2 —12 (W)
E=x—t E=x+t E=x—t

Figure 22
£2+68+3
ug4(§) = —2%
E=x+t+2

CONCLUSION

In this article, we have proposed a new method called calibrating auxiliary differential equation
method using the generalized wave transformation (2.2), to obtain the exact solutions for BBM
equation. The main advantage of this method is its capability of greatly reducing the size of
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computational work compared to existing techniques.
The method could be used for a large class of very interesting nonlinear equations.
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