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ABSTRACT:Most often, in classification procedures, error rates or probability of
misclassification are assessed. Because in real life application of classification rules or
methods, some errors of misclassification can be more costly than the others. In this work,
two methods of estimating error rates, namely; the Jackknife and resubstitution methods are
examined using ten samples of size n; = n, = 30,900 from the population pair p; =
(.3, .3, .3)and p, = (.4,.4,.4). From the results obtained from the experiments, we
observed that the resubsitution method performed better than the Jackknife method in
estimating the exact probabilities of misclasstfima
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INTRODUCTION

Two relevant methods as regards to the assessnfidnia® and standard error are the
bootstrap and Jackknife methods. In discriminaatyais, many works have been done as on
how to estimate the probability of misclassificatiand or the apparent error rate. Closely
related to the Jackknife is the idea of cross wdilish which is mostly used in the more
specialized area of model choice and assessmeifarrpance of a prediction or allocation
rule. (see krzanowski 1993). However, this methbdstimation (Jackknife) have not been
applied extensively on the Full multinomial, Fiestd Second order Bahadur and the optimal
procedures.

In this procedure, each sample member is omittédrmfrom the data, there by generating n
separate samples each of size 1. The advantage of this method when it is beindiepp

is that it requires only one explicit inversionmely, the inversion of the sample variance-
covariance matrix based on the entire sample. Eaerale which we are proposing based on
the Jackknife method will be applied on two differg@opulation structures in order to see
how it performed.

The jackknife procedure omits one observation, lbpgethe classification function using all
other observations (n1 + n2 — 1) and uses theifitad®n function to classify the excluded
observation. This process is repeated for eacheobbservations. The estimates of error rates
obtained are unbiased estimates of error ratea fdassification rule based on n1 + n2 — 1
observation. Using the jackknife method for thel fmultinomial, first and second order
Bahadur and the optimal procedures require no reversion. Using the jackknife method
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on the linear discriminant function involves themgmtation of n1 + n2 -1 discriminant
functions and nl + n2 -1 matrix inversions. Sinbe tomputation of each discriminant
function requires a matrix inversion, this methodswdevised to reduce the number of
inversions. Otherwise for large dimensional proldems would be too time consuming. The

proposed method requires only one explicit inversimamely, the inversion of the sample
variance —covariance matrix based on the entirgpkam

REVIEW OF RELATED LITERATURE

Let 8, denote the value o® obtained from thé™" of these samples, that is when tifé
sample member is omitted from the calculation, leh@® denote the average of the n values
é(i). Then the Jackknife estimate of the standard efrd@® is given by

= {(&Z)TL.(6; -2 (krzanowski 1993)

Krzanowski further stated that because of the eiphstructions for obtaining each of the
sub-samples in the Jackknife procedure, it is jptesso find an analytical expression f@jr
in those cases whetehas a simple algebraic form.

Bartlett (1951) also used an identity givenBy= A + UV and obtained

_r_A"uva”
1+V'A~'U

where A and B are square non-singular matriceseniiis a column vector and is a row
vector.

This inverse and/or identity we shall use in owpgmsed method.

Goldstein and Dillion (1978) also noted that Ladbhrexch’'s estimate is sometimes in
accurately referred to as a Jackknife estimatdowolg a suggestion made by Miller (1974),
the actual and the apparent error being biasethatsts oft* are logical candidates for the
Jackknife method. In its most simplistic form, Btbe an estimate of a parametebased on
a sample of size N-1 formed by deleting fHeobservation.

Define
0, =NO—-(N-106_;,j=12,..,N
Then the estimator

1 N-1)&
;:ﬁZ (N);&

j=1

which has the property that it estimates the orlélelterm from a bias of the form
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E(@):9+%+9%

If 6 represents the actual erl’c(f)) based on a sample of sitke= N, + N, from the mixed
population, then the Jackknife actual error is gileg
(A sy N-1Q8 ~ ~\ .
t D)— Nt(D)—TZt_]. (D) where t_, (D) is the actual error based oN, +N,-1
=1
observations.

Again, for normal approximation arguments in defeing estimates of actual error see
Cochran and Hopkins (1961), Hills (1966) and fduladiscussion of the Jackknife and the
boostrapping methods see Efron (1982).

PROPOSED METHOD

The proposed method is an extension of the Jaakknéthod. For a k-population case, we
have the following structures

| )l | )l | )l N )

! M " oM

However, let X,,...,X,, be a sample from population; andY,,....,Y, be a sample from
populatiorvz,. Let X and S, be the mean vector and variance-covariance mafrithe
sample fromrz,Y and S, be the mean vector and variance covariance mafttixe sample
from 7z,.

The pooled covariance matrix for the two samples is

_ (nl - 1)Sx + (nz _1)Sy

n+n,-2

Suppose we leave out th8 &bservation X from 71, then the new mean of the sample from
71, becomes
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M
2 Xy
i=1

Xk = 7k :nly_
n -1 -

Xy i 2k
1

The variance will be

.ﬂ

(X _Yk): X, = nlx _Xk = nl(xi _Y)+(Xk _Xi)
' | n -1 n -1

and

S I S A

and the new covariance will be

i(xl _YkXXi _Yk)/i =k

i=1

(nl - Z)Slk

=3 (%, = XXy =X = (%, =X )%, =X
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n (XL _Y)-'-(Xk - xu)

i(xli_zk)( Xlk) Z[ (XlI—X) (X _Xli)] = (n, -1

i=1

. (3.1)

__J(xk_y)(xk_y)f

2
:( " j(xkx’ 2X +Y7)
n -1

Equation 3.1 now reduces to

2
i(xi ~Xi )X, - X = (n 1_1] [nf(n1 ~1)s, -2n, X, X' +2n2X X + (1—2n1)i xixi’}
i=1 l i=1
Therefore

L]

. Zl:(xi X)X, = XS = (%, = XX, - X o)

2
- [nf(”l ~1)5, 2%, X +207XX +nX, X, +1-2n)Y Xix/} ‘(rﬁj
i=1 -

X X =2X, X (n,-2)(n, -1?S, = nZ(n, -1)S, -2nX, X +2n?XX' +nX, X, +(1-2n)
n-1S, +n XX |-n2X, X +2nX, X -nZXX’

(0.~ 2)n,-17S, =( -1, +nt-n XX ~2X, X + X, X,

= (n-17's, +nyf1-n)(X - XX - X)

—
—_

Finally we have

(n -2)S, = (0, ~1)S, ~ (X, = XJ X =X ) 32
(nl _1)
But
(nl - 2)Sxk + (nz _]-)Sy_l . . . .
Sy = r— IS the pooled covariance matrix when the samplatpHi,
1 2

is left out. Note that
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(n,+n, =35, = -1)s, + (-8, - (x, - Xx, -]
=+ =25 P (=X, )
s - (nh+n,-2)s  n (X, -X)x,-X)

(h,+n,-3) n-1 n+n,-3

From Bartletts indentify

B=A+UV’/
B = Al-AUV/ AT
1+V' AU

(n1+n2 _2)8
n+n,-3

Let A= and

V=X- Xy, we then have that

If X, is from 7, then

n+n,-2 n+n,-2 n-1 (n1+n2—2)

(S“‘ )-1 _n+n -3, (n, +n, -3) ot M (X1k —YXYl —Ym)

(nl —1)(n11+ n, - 2) (Yl — X 1 )S_l (Xlk —Yl)

1+

and the discriminant function computed without skngmint X,, is given by

Dy (Xlk) = M{Xm _%(?1 +Y2)+(sz—__yl)l)}[(slk )_l - (Yl —Yz)——(xlk _Yl)

n+n,-2 2\n,
..3.3

From equation 3.3, estimates of probabilities ofataissification are computed by summing
the number of cases that were classified from @agiulation and dividing by the number in
each population which is regarded as cross- vatidat

SAMPLING EXPERIMENTSAND RESULTS

In order to compare the performance of the two washof estimating error rates, namely,
the Jackknife and the Re-Substitution methods, weeted 10 samples of sizg =
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n, =30, 900 from the population pg = (.3,.3, .3) andp, = (.4, .4,.4) with which we
obtained results for five methods of classificatieamely optimal rule, full multinomial
rule first order bahadur procedure,second orderadah procedure and procedure and
procedure based on the linear discriminant fungtion

Table 4.1
nl = nz S 30

P(MC) = 0.4320

OPTIMAL FULL FIRST SECOND LDF

RESUB | JACK| RESUB JACK | RESUB| JACK | RESUB| JACK | RESUB| JACK

0.3444 | 0.34400.3333 | 0.2846 0.3333 | 0.31250.3333 | 0.2846 0.3333 | 0.3154

0.4666 | 0.4626 0.4000 | 0.39740.4500 | 0.4545 0.4000 | 0.3974 0.4000 | 0.4482

0.3755 | 0.37190.3500 | 0.3463 0.3500 | 0.353§ 0.3500 | 0.3463 0.3500 | 0.3470

0.4500 | 0.44600.4167 | 0.40800.4500 | 0.4386 0.4167 | 0.4080 0.4500 | 0.4407

0.3534 | 0.35300.3500 | 0.3465 0.3667 | 0.3622 0.3500 | 0.3463 3500 0.3516

0.3833 | 0.38390.3833 | 0.37850.3833 | 0.3828 0.3833 | 0.3807 0.3833 | 0.3817

0.3567 | 0.35720.3167 | 0.3142 0.3500 | 0.3407 0.3167 | 0.3142 0.3500 | 0.3481

0.3803 | 0.38000.3667 | 0.3640 0.3667 | 0.3682 0.3667 | 0.3640 0.3667 | 0.3661

0.3833 | 0.38410.3500 | 0.34700.3833 | 0.3798 0.3667 | 0.355% 0.3833 | 0.3809

0.4167 | 0.4176 0.3500 | 0.3484 0.4167 | 0.41600.3833 | 0.3790 0.4167 | 0.3821

0.3910 | 0.3900 3617 0.3533 0.3850 | 0.3809 0.3667 | 0.3576 0.3783 | 0.3762
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Table 4.2
Dl = DZ = 900

0(00) = 04320

OPTIMAL FULL FIRST SECOND LDF

RESUB | JACK| RESUB JACK | RESUB| JACK | RESUB| JACK | RESUB| JACK

0.4445 | 0.44450.4456 | 0.44550.4456 | 0.44550.4455 | 0.44550.4472 | 0.4463

0.4152 | 0.41520.4139 | 0.41380.4167 | 0.4166 0.4139 | 0.4138 0.4167 | 0.4166

0.4194 | 0.4194 0.4089 | 0.4088 0.4089 | 0.40885 0.4089 | 0.4088 0.4089 | 0.4088

0.4320 | 0.43200.4250 | 0.4249 0.4350 | 0.43490.4250 | 0.4349 0.4350 | 0.4349

0.4173 | 0.41730.4128 | 0.41270.4128 | 0.41270.4128 | 0.41270.4128 | 0.4127

0.4108 | 0.4108 0.4111 | 0.41110.4111 | 0.41110.4111 | 0.41110.4111 | 0.4111

0.4133 | 0.41330.4050 | 0.40490.4106 | 0.41050.4106 | 0.41050.4106 | 0.4105

0.4254 | 0.42500.4244 | 0.42440.4261 | 0.4304 0.4261 | 0.42610.4350 | 0.4349

0.4243 | 0.42410.4122 | 0.41220.4122 | 0.41220.4122 | 0.41220.4122 | 0.4122

0.4482 | 0.41710.4233 | 0.42330.4267 | 0.4266 0.4239 | 0.4238 0.4267 | 0.4266

0.4250 | 0.42190.4182 | 0.41820.4205 | 0.4209 0.4190 | 0.4199 0.4216 | 0.4214

CONCLUSION

From the results obtained from our experiment, Wweeoved that the resubstitution method
performed better than the Jackknife method in esiing the exact probability of mis
classification. This is not surprising because lassification using binary variables, we do
not classify observations parse, but observatiatits iesponse patterns 000, 010, 001, and so
on. Leaving out one observation from a responseatvill not make much difference in the
error rates. More often than not also, one encosimésponse patterns with zero observations
which make it impossible to apply the Jackknifeetinod.

REFERENCES

Bartlett,M.S.(1951) “ An inverse matrix adjustmemising in discriminant analysis” Annals
of Mathematical Statistics, 22 page 107-111.

36



International Journal of Mathematics and Statistitslies
Vol.1, No.3, pp. 29-37, September 2013

Published by European Centre for Research TrammfDevelopment UK (www.ea-journals.org)

Cochran, W.G., Hopkins, C.E. (1961) “Some clasatfan problems with multivariate
gualitative data” Biometrics, 17, 10 - 32.

Efron , B. (1975) “The Efficiency of logistic Reggsion compared to Normal Discriminant
Analysis”, Journal of America Statistical Assoamatj 70, 892 — 898.

Goldstan ,M., and Dillion, W.R. (1978), “Discretasbriminant Analysis”, John Wiley and
Son’s, INC new York

Hills, M. (1967) “Discrimination and allocation waitdiscrete data” J.Roy.Stat.Soc. C 16,237-
250.

Krzanowski, W.J. (1993) “Principles of Multivariagaalysis,”, Oxford University Press Inc.
new York.

Lachenbruch, P.A. and Mickey, R.R., (1968) “Estiimatof Error rates in Discriminant
Analysis”., Technometrics 10, 1-11.

Onyeagu, S.I and Adegboye, O.S. (1996) “Some mstlmbdEstimating the Probability of
misclassification in Discriminant Analysis” Journal the mathematical Association of
Nigeria ABACUS vol. 24 no 2 page 104-112.

Onyeagu, S.1.(2003) “A first course in Multivarigatistics,” Mega concept, Awka Nigeria.

Onyeagu S.I. (1997) “Derivation of the optimal cifisation rule for discrete variables”
Unpublished Ph.D dissertation submitted to the Ersity of Ilorin. Nigeria.

37



