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ABSTRACT: The nonequivalent groups with anchor test (NEAT) equating design are traditionally 

based on using a single anchor to adjust for differences in test difficulty which is critical to equating 

test forms in most large-scale testing programs. When tests differ somewhat in content and length, 

methods based on the item response theory (IRT) model leads to greater stability of equating results. 

The current study compared standard errors, bias, and root mean square errors using four Rasch 

IRT equating methods for the nonequivalent groups with anchor test design. The sizes of the equating 

anchor were employed in all four different Rasch equating methods to investigate how different 

anchor sizes may impact the test accuracy of the tests by conducting a simulation study.  
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INTRODUCTION 

 

In most large-scale testing programs, more than one form of a test is often administered at different 

times and at different locations.  Although all such tests should be constructed with the same content 

and same statistical specifications, both test forms and the samples of test takers cannot be equal, and 

population parameters will not remain stable over time. The common-item nonequivalent groups 

design (CINEG) is traditionally based on using anchor items to adjust for differences in test difficulty 

(Braun & Holland, 1982; Kolen & Brennan, 2014; von Davier, Holland & Thayer, 2004), which is 

critical to equating test forms in most large-scale testing programs. Substantially and statistically, the 

anchor test either remains internally or externally in the test forms as internal anchor or external 

anchor items (Cook & Peterson, 1987). The number of items in a test affects the reliability, and, 

therefore, possibly the validity of test scores (Messick, 1989).  In general, a longer anchor test is 

considered desirable, because it is more reliable, covers the content better, and it tends to generate 

fewer random equating errors in a CINEG design (Budescu, 1985). However, when the item 

parameters of both tests are estimated concurrently, as few as five or six carefully chosen items could 

perform as satisfactory anchors in IRT equating (Wingersky & Lord, 1984).  According to Angoff 

(1984), a rule of thumb for the minimum number of anchor items is 20 items or 20% of the number, 

whichever is larger. The presence of anchor items requires additional considerations because these 

items play a large role in determining the equating function. The properties of these items should be 

a primary concern when conducting equating studies (Cook & Peterson, 1987).  When tests differ 

somewhat in content and length, methods based on the item response theory (IRT) model lead to 
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greater stability of equating results (Kolen & Brennan, 2014). According to Lord (1975), IRT 

methods of equating is useful, especially in increasing the stability of the scales near the extreme 

values and in reducing drift in equating chains of several test forms. Wang, Qian, and Lee (2013) 

evaluated the combined effects of reduced equating sample size and shortened anchor test length on 

item response theory (IRT)-based linking and equating results. The presence of anchor items requires 

additional considerations because these items play a large role in determining the equating function. 

The properties of these items should be a primary concern when conducting equating studies (Cook 

& Peterson, 1987). Kolen and Whiteney (1981) found IRT equating with the one-parameter (Rasch) 

model to be effective. Although the patterns of standard errors of traditional equating methods (e.g., 

mean, linear, equipercentile equating methods, etc.) for the single group, random group, and CINEG 

designs have been studied widely and the results are well-known (Tsai, Hanson, Kolen, & Forsyth, 

2001), relatively little information about the standard errors of Rasch IRT equating for the CINEG 

design is available. One of the few studies conducted by Tsai, Hanson, Kolen, and Forsyth (2001) 

bootstrap errors of five three-parameter item response theory (IRT) equating methods for the CINEG 

design were compared. The magnitudes of the estimated standard errors from this study suggested 

reasonably accurate IRT equating for the CINEG design can be achieved even with an examinee 

sample size of 500. However, in their study, only standard errors of equating were estimated using 

different three-parameter IRT equating methods used. Meanwhile in their study, only different 

sample sizes were compared regarding standard errors of equating without varying the anchor sizes.  

         

The current study extended the research of Tsai, Hanson, Kolen, and Forsyth (2001) by comparing 

bootstrap equating errors using four Rasch IRT equating methods for the CINEG design: (a) whether 

Rasch IRT parameters are estimated separately or concurrently, (b) whether a scale transformation is 

calculated to place parameters for the two forms on a common scale (e.g., Stocking & Lord, 1983), 

(c) whether the true-score or observed-score equating method is used. The sizes of the equating 

anchor were examined in all four different methods. Table 1 summarized the characteristics of these 

four methods in three dimensions using three different anchor test lengths.  

 

Table 1. Four Rasch Equating Methods with Three Different Anchor Test Lengths  

Method 

IRT Parameter 

 Estimation 

Scale 

Transformation  Equating Method  Anchor Test Length 

1 

Separate 

Calibration Yes True score 16,    20,   24 

2 

Separate 

Calibration Yes Observed score 16,    20,    24 

3 

Concurrent 

Calibration No True score 16,    20,    24 

4 

Concurrent 

Calibration No Observed score 16,    20,    24 
Note: Rasch=Rasch Item Response Theory.  
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METHOD 

 

The Data and Examinees 

This study used simulated data with total items of 80. The anchor items sizes of 16, 20, 24, were used 

based on Angoff’s suggestion (1984, p.107). According to Angoff (1984), the rule of thumb for the 

minimum number of anchor items of 20 anchor items or 20% of the total items in the test. 24 items 

or 30% of the total items were used to compare the differences. The one-parameter Rasch model is 

one of the most widely used IRT models (Hambleton, Swamination, & Rogers, 1991).  Item 

characteristic curves for the Rasch model are estimated by the equation 

 

                                              𝑝𝑖(𝜃) =
𝑒(𝜃−𝑏𝑖)

1+𝑒(𝜃−𝑏𝑖)   , 𝑖 = 1, 2, … , 𝑛                                                          (1) 

  

where 𝑝𝑖(𝜃) is the probability that a randomly chosen examinee with ability 𝜃  answering item i 

correctly, and bi is the item i difficulty parameter.  

 

Simulation Procedure 

 

Methods 1 and 2 

In the current study, total number of items was set to 80 with three different anchor sizes of 16, 20, 

and 24.  The values of 𝑏𝑖 vary from -2.0 to 2.0 for both Forms X and Y. A sample size of 1,000 

examinees with the ability values with mean of 0 and standard deviation of 1 for examinees who took 

Form X and the ability values with mean of 0 and standard deviation of 0.5 Form Y separately were 

set. The steps for Methods 1 and 2 for computing bootstrap equating errors of IRT equating for the 

CINEG design are presented as follows.  

 

1. The true equating functions for three anchor sizes were set to obtain the scales scores for both 

true and observed score equating methods.  Sparse matrices were then obtained for concurrent 

calibration using irtoys package from R (R Core Team, 2017).  

2. Bootstrap random samples were drawn for both Form X and Form Y. 

3. The package irtoys was run separately on each bootstrap random sample to obtain item 

parameter estimates and 𝜃 distributions for Form X and Form Y.  

4. The plink package from R (R Core Team, 2017) was used to estimate the Stocking and Lord 

(SL, 1983) scale transformation coefficients 𝜃 distributions that were obtained from step 3.  

5. The coefficients obtained from step 4 were applied to the entire set of Form X item parameters 

and ability distributions to produce rescaled Rasch IRT parameter estimates for Form X. 

6. The plink package from R (R Core Team, 2017) was used to obtain From Y true-score and 

observed-score equivalents for Form X using estimated item parameter estimates for both forms, with 

rescaled item parameters on Form X that were obtained from step 5. 

7. Steps 1-6 were repeated 1,000 times, and the standard deviation was computed over 1,000 

replications to obtain the standard errors of Rasch IRT true-score and observed-score equating at all 

raw score points for the new form.  
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In applying the SL (1983) scale transformation method, the common-item parameter estimates were 

used to obtain equating coefficients A and B. Then, IRT true-score equating (TSE, Method 1) and 

observed-score equating (OSE, Method 2) were performed with three different anchor test lengths 

examined. This procedure was replicated 1,000 times to obtain bootstrap estimates of the standard 

error of equating (SEE). 

 

Methods 3 and 4 

A concurrent calibration of both forms was conducted using irtoys from R (R Core Team, 2017) to 

obtain item and ability parameter estimates. Because all of the items and both groups of examinees 

were put together in the analysis, the parameter estimates were on a common scale. Thus, there was 

no need to use the SL (1983) scale transformation methods to rescale the IRT parameters on the new 

form. Finally, IRT true-score (Method 3) and observed-score equating (Method 4) were performed 

with four different anchor test lengths examined using the package plink from R. This procedure was 

replicated 1,000 times to obtain the bootstrap equating error. The steps for Methods 3 and 4 for 

computing bootstrap equating errors of Rasch IRT equating for the CINEG design are presented as 

follows.  

 

1. A bootstrap sample of Form Y examinee item responses and a bootstrap sample of Form X 

examinee item responses was taken. 

2. The package irtoys from R (R Core Team, 2013) was run to obtain item parameter estimates 

for all items and a 𝜃 distribution for Form X and Form Y concurrently. In this case, the items that 

appeared only on Form Y were regarded as not reached for the examinees of Form X, and the items 

that appeared only on Form X were regarded as not reached for the examinees of Form Y.  

3. The plink package from R (R Core Team, 2013) was used with estimated item parameters 

obtained from step 2 to obtain Form Y true-score and observed-score equivalents. 

4. Steps 1 to 3 were replicated 500 times, and the standard deviation was computed repeatedly 

over 1,000 to obtain the standard error of Rasch IRT true-score and observed-score equating methods.  

 

Criteria 

At each score point, the standard errors of equating (SEE) were compared directly for four different 

bootstrap Rasch models (true-score equating with separate calibration and SL scoring transformation; 

observed-score equating with separate calibration and SL scoring transformation; true-score equating 

with concurrent calibration; observed-score equating with concurrent calibration). Considering all 

score points together, the standard error of equating is defined as follows:  

 

𝑆𝐸𝐸(𝑥) = ∑ {𝑠𝑒 ∗ [𝑒𝑞𝑦 ̂ (𝑥𝑖)]}𝑘
𝑖−0 ,                            (2) 

       

An RMSE statistic was calculated to take into account both systematic and random errors. Total error 

of the estimates of standard error can be partitioned into random error (SEE) and systematic error 

components (bias) as follow:  

 

𝑀𝑆𝐸{𝑠𝑒 ∗ [𝑒𝑞𝑦 (𝑥𝑖)]} = 𝐸{𝑠𝑒 ∗ [𝑒𝑞𝑦 ̂ (𝑥𝑖)] − 𝜎[𝑒𝑞𝑦 ̂ (𝑥𝑖)]}
2
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                         =  𝑉𝑎𝑟{𝑠𝑒 ∗ [𝑒𝑞𝑦 ̂ (𝑥𝑖)]} +  {𝐵𝑖𝑎𝑠(𝑠𝑒 ∗ [𝑒𝑞𝑦 ̂ (𝑥𝑖)])}
2

,                                 (3) 

where Bias (𝑠𝑒 ∗ [𝑒𝑞𝑦 ̂ (𝑥𝑖)]) = 𝐸{𝑠𝑒 ∗ [𝑒𝑞𝑦 ̂ (𝑥𝑖)] − 𝜎[𝑒𝑞𝑦 ̂ (𝑥𝑖)]}, E stands for expected value, and 𝜎 

is the true value of the standard error for a population. The RMSE is the square root of the MSE. That 

is 

 𝑅𝑀𝑆𝐸{𝑠𝑒 ∗ [𝑒𝑞𝑦 (𝑥𝑖)]} = √𝑀𝑆𝐸{𝑠𝑒 ∗ [𝑒𝑞𝑦 (𝑥𝑖)]} 

= √𝑉𝑎𝑟{𝑠𝑒 ∗ [𝑒𝑞𝑦 (𝑥𝑖)]} +  {𝐵𝑖𝑎𝑠(𝑠𝑒 ∗ [𝑒𝑞𝑦 (𝑥𝑖)])}
2
,                (4) 

 

Data Analysis 

 Bootstrap equating errors were computed to examine how four different Rasch IRT equating methods 

combined with three different anchor test lengths impact the accuracy of the test in a NEAT design. 

The data analysis procedure for each of the four methods are described as follows.  

 

For Method 1 and Method 2, Rasch IRT parameters for Form X and Form Y are estimated separately 

and a linear transformation method (Stocking & Lord, 1983) is used to place Rasch IRT parameter 

estimates for Form X and Form Y scale. Then, Rasch IRT true-score (Method 1) and observed-score 

(Method 2) equating methods are used to obtain Form Y true-score and observed-score equivalents. 

For Method 3 and Method 4, Rasch IRT parameters for Form X and Form Y are estimated 

concurrently. A linear scaling transformation method is not needed because Rasch IRT parameter 

estimates are already on the same scale.  Rasch IRT true-score (Method 3) and observed-score 

(Method 4) equating methods are used to obtain Form Y true-score and observed-score equivalents. 

For the first two methods, IRT parameters were estimated using separate calibration and then true-

score, observed-score IRT equating with three anchor test lengths employed. For the last two methods, 

IRT parameters were first estimated using concurrent calibration for Form X and Form Y, then true-

score and observed-score equating were performed with three anchor test lengths employed. The 

number of equating errors associated with these four Rasch equating methods was quantified by the 

standard errors of equating (SEE), bias, and root mean square errors (RMSE). The bootstrap approach 

was used to estimate standard errors of IRT equating for each of the four methods.  

 

RESULTS 

     

 In the current study, four different Rasch IRT equating methods were used to compare the standard 

errors of equating with three different lengths of anchor tests used: (a) V1=20, (b) V2=16 (20% of the 

total items), and (c) V3=24 (30% of the total items). The sample size of the study is 1,000 with 80 

total items, the examinees who took either tests of Form X or Form Y.   

 

The Anchor Length of 20 

Figure 1 through 3 show the standard errors of equating (SEE), bias, and root mean square error 

(RMSE) for all four Rasch equating methods with anchor length of 20.  The results are summarized 

as follows:   
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1.  Based on the SEE index, both Rasch IRT true and observed-score equating (separate 

calibration, Method 1-SEE=0.23, Method 2-SEE=0.24) produced the same smallest standard errors 

of equating, while both Rasch IRT true and observed-score equating (concurrent calibration, Method 

3-SEE=0.33, Method 4-SEE=0.34) produced the same somewhat larger standard errors of equating.  

2. Based on the Bias index, the amount of bias varies among four different Rasch IRT equating 

methods. Among them, Method 1 (separate calibration, Method 1-Bias=0.12) produced the smallest 

bias of equating followed by Method 2 (separate calibration, Method 2-Bias=0.18) while Method 3 

(concurrent calibration, Method 3-Bias=0.32, Method 4-Bias=0.30) produced the largest bias of 

equating.  

3. Based on the RMSE index, both Rasch IRT true and observed-score equating (separate 

calibration, Method 1-RMSE=0.28, Method 2-RMSE=0.29) produced the same smallest standard 

errors of equating, while both Rasch IRT true and observed-score equating (concurrent calibration, 

Method 3-RMSE=1.12, Method 4-RMSE=1.08) produced the same somewhat larger root mean 

square errors (RMSE).  

4. Both Rasch true and observed score equating methods with separate calibration produced 

same smallest SEE, bias, and RMSE. 

5. The SEE was normally distributed for all four Rasch Equating methods. The magnitude of the 

bias of equating were quite different across four methods. Method 3 produced the greatest bias.   

The RMSE round the equated scores of 42 was approximately 0.25. Thus, the equating results around 

the score of 42 appear to be reasonably accurate with anchor length of 20.  
 

 

 

Figure 1. Standard Errors of Equating for the Four 

Rasch Equating Methods (V1=20). Stsee2=separate true-

score standard errors of equating; sosee1= separate 

observed-score standard errors of equating; ctsee1= 

concurrent true-score standard errors of equating; cosee1= 

concurrent observed-score standard errors of equating. 

 
 

 

 

Figure 2. Bias of Equating for the Four Rasch Equating 

Methods (V1=20). stbias1=separate true-score bias of 

equating; sobias1= separate observed-score bias of 

equating; ctbias1= concurrent true-score standard errors of 

equating; cobias1= concurrent observed-score standard 

errors of equating.  
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Figure 3. RMSE of Equating for the Four Rasch 

Equating Methods (V1=20). strmse1=separate true-score 

root mean square error (rmse) of equating; sormse1= 

separate observed-score rmse of equating; ctrmse1= 

concurrent true-score rmse of equating; cormse1= 

concurrent observed-score rmse of equating.  
 

 

 

 

 

The Anchor Length of 16 

Figure 4 through 6 show the standard errors of equating (SEE), bias, and root mean square error 

(RMSE) for all four Rasch equating methods with anchor length of 16. The results are summarized 

as follows:   

1.  Based on the SEE index, both Rasch IRT true and observed-score equating (separate 

calibration, Method 1-SEE=0.43, Method 2-SEE=0.44) produced the same somewhat larger standard 

errors of equating, while both Rasch IRT true and observed-score equating (concurrent calibration, 

Method 3-SEE=0.32, Method 4-SEE=0.33) produced the same somewhat smallest standard errors of 

equating.  

2. Based on the Bias index, the amount of bias varies among four different Rasch IRT equating 

methods. Among them, Method 1 (separate calibration, Method 1-Bias=0.07) produced the smallest 

bias of equating followed by Method 2 (separate calibration, Method 3-Bias=0.17) while Method 3 

(concurrent calibration, Method 3-Bias=0.42; Method 4-Bias=0.40) produced the largest bias of 

equating.  

3. Based on the RMSE index, both Rasch IRT true and observed-score equating (separate 

calibration, Method 1-RMSE=0.41, Method 2-RMSE=0.42) produced the same smallest root mean 

square errors (RMSE) of equating, while both Rasch IRT true and observed-score equating 

(concurrent calibration, Method 3-RMSE=0.91, Method 4-RMSE=0.89) produced the same 

somewhat larger root mean square errors (RMSE).  

4. Both Rasch true and observed score equating methods with separate calibration produced 

same somewhat bias, and RMSE. 

5. The SEE was normally distributed for all four Rasch Equating methods. The magnitude of the 

bias of equating were quite different across four methods. Method 3 produced the greatest bias.   

6. The RMSE around the equated score of 42 was approximately 0.25. Thus, the equating results 

around the score of 42 appear to be reasonably accurate with anchor length of 16.  
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Figure 4. Standard Errors of Equating for the 

Four Rasch Equating Methods (V2=16). 
stsee2=separate true-score standard errors of 

equating; sosee2= separate observed-score standard 

errors of equating; ctsee2= concurrent true-score 

standard errors of equating; cosee2= concurrent 

observed-score standard errors of equating. 
 
 

 

 

Figure 5. Bias of Equating for the Four Rasch 

Equating Methods (V2=16). stbias2=separate true-

score bias of equating; sobias2= separate observed-

score bias of equating; ctbias2= concurrent true-

score standard errors of equating; cobias2= 

concurrent observed-score standard errors of 

equating.  
 
   
  
 
 Figure 6. RMSE of Equating for the Four Rasch 

Equating Methods (V2=16). Strmse2=separate 

true-score root mean square error (rmse) of 

equating; sormse2= separate observed-score rmse of 

equating; ctrmse2= concurrent true-score rmse of 

equating; cormse2= concurrent observed-score rmse 

of equating. 

 
 
 
 
 
 

The Anchor Length of 24 

Figure 7 through 9 show the standard errors of equating (SEE), bias, and root mean square error 

(RMSE) for all four Rasch equating methods with anchor length of 24. The results are summarized 

as follows:   

 

1.  Based on the SEE index, both Rasch IRT true and observed-score equating (separate 

calibration, Method 1-SEE=0.25, Method 2-SEE=0.26) produced the same somewhat smallest 

standard errors of equating, while both Rasch IRT true and observed-score equating (concurrent 

calibration, Method 3-SEE=0.95, Method 4-SEE=0.96) produced the same somewhat larger standard 

errors of equating.  
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2. Based on the Bias index, the amount of bias varies among four different Rasch IRT equating 

methods. Among them, Method 1 (separate calibration, Method 1-Bias=0.05) produced the smallest 

bias of equating.  

3. Based on the RMSE index, both Rasch IRT true and observed-score equating (separate 

calibration, Method 1-RMSE=0.61, Method 2-RMSE=0.62) produced the same smallest standard 

errors of equating, while both Rasch IRT true and observed-score equating (concurrent calibration, 

Method 3-RMSE=1.46, Method 4-RMSE=1.44) produced the same somewhat larger root mean 

square errors (RMSE).  

4. Both Rasch true and observed-score equating methods with separate calibration produced 

same smaller bias, and RMSE. 

5. The SEE was normally distributed for all four Rasch Equating methods. The magnitude of the 

bias of equating were quite different across four methods.  

 

 
Figure 7. Standard Errors of Equating for the 

Four Rasch Equating Methods (V3=24). 
stsee3=separate true-score standard errors of 

equating; sosee3= separate observed-score standard 

errors of equating; ctsee3= concurrent true-score 

standard errors of equating; cosee3= concurrent 

observed-score standard errors of equating. 
 

 

 

Figure 8. Bias of Equating for the Four Rasch 

Equating Methods (V3=24). stbias3=separate true-

score bias of equating; sobias3= separate observed-

score bias of equating; ctbias3= concurrent true-score 

standard errors of equating; cobias3= concurrent 

observed-score standard errors of equating. 

 

 

 

 

 
  Figure 9. RMSE of Equating for the Four Rasch 

Equating Methods (V3=24). strmse3=separate true-

score root mean square error (rmse) of equating; 

sormse3= separate observed-score rmse of equating; 

ctrmse3= concurrent true-score rmse of equating; 

cormse3= concurrent observed-score rmse of 

equating. 
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DISCUSSION 

 

 In this study, bootstrap procedures were described for estimating standard errors of four different 

Rasch IRT equating methods in three dimensions. Three different anchor test lengths were employed 

in all four methods. Similar procedures can be used for estimating standard errors of IRT equating in 

other simulation testing studies. The estimated standard errors can be used to plan the anchor test 

sizes required for IRT equating and to document the amount of error in IRT equating results.  

     

 The magnitudes of the estimated standard errors, bias, and RMSE of equating found in this study 

suggested that when IRT parameter estimation was conducted separately by form, the standard errors 

of IRT true and observed score equating were similar, which confirmed the results from Tsai, Hanson, 

Kolen, and Forsyth’s study (2001). Meanwhile, the amount of SEE is quite small when Rasch IRT 

parameter estimation was conducted separately.  The magnitudes of the estimated standard errors 

found in this study suggested that reasonably accurate IRT equating for the CINEG design can be 

achieved with an anchor size of 20 or 20% of the total items. However, increasing anchor test sizes 

does not contribute further to lowering the SEE and RMSE significantly, indicating the length of the 

anchor tests is not the most critical factor to improve testing accuracy. More investigation can be 

focused on the quality of the anchor items.  

      

The methods based on the concurrent calibration of Rasch IRT parameters had more SEE than did 

the methods based on separate calibration, which contradicted the results from Tsai, Hanson, Kolen, 

and Forsyth’s study (2001).  

     

 This study compared the SEE, bias, and RMSE using four Rasch IRT equating methods with three 

different anchors employed in all four methods. As the total equating error (RMSE) consists of 

random error (SEE) and systematic error (bias), the relative performance of the methods studied in 

this article with regard to random error would have changed to some extent when total equating errors 

were considered.  

      

In sum, the IRT equating methods used in the current study can be used as the reference when 

different calibrations are needed in large-scale tests. The results from the study regarding the anchor 

test length can also be recommended in testing systems.  

 

Limitations and Future Study 

This study compared four Rasch IRT equating methods in three dimensions when three different 

anchor test lengths employed for CINEG design. The random error, systematic error, and total error 

of equating were estimated. The entire study used the simulated data instead of empirical data. The 

results cannot be generalized to empirical studies. Future investigations should be made using 

empirical data to validate the findings from this study. In this study, only one-parameter (Rasch) IRT 

models were used. Further studies can be conducted using different IRT models. In the current study, 

only anchor test length is investigated, different factors that may affect the accuracy of test forms 

should be investigated such as scale stability, anchor item quality, and total test length, etc. should 

https://www.eajournals.org/
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also be examined. In addition, the traditional equating methods and IRT equating methods can be 

used to compare random, systematic error, and total errors to investigate the testing accuracy.  
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