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ABSTRACT: The problem of constructing confidence intervals for the ratio of variance 

components in unbalanced random one-way model is to investigate. In this respect, various 

different exact methods, which are introduced, by Wald (1947), Bross (1950), Tukey (1951), 

Anderson, and Bancroft (1952) are used. However, these methods are rather difficult to 

compute since it involves the solution of non-linear equations. So several approximate 

methods, which are easier to compute, are discussed. These methods were introduced by 

Satterthwait (1946), Morigiti (1954), Bulmer (1957), Thomas and Hultiquist (1978), El-

Bassiouni (1978), and El-Ganzouri (1986). In this search a Monte Carlo simulation study is 

conducted to examine the performance of the above mentioned methods. Recently, new 

alternative methods namely Bootstrap are also, given and included in comparison. 

Simulation depends on the sizes of the samples and that the basis of comparison are 

constructed based on the coverage values and average length. After damaged the results of 

the coverage values and average length are discussed. In design (1) the best method is (SAM) 

method, because it has appropriate coverage value with a small value of average length for 

all values of ρ, this method is from bootstrap methods. In design (2) and design (5) the best 

method is (Wald) method, because it has high coverage with a small value average length 

with all values of ρ, this method from exact methods. In design (3) and design (4) the best 

method is (Wald) for small values of ρ, ρ≤0.1and it is an exact method. However, for large 

values of ρ, ρ>0.1 the best method is (SAM) method and it is a bootstrap method. In applied 

case sugar -cane experiment the results of limits, the A.ADJ has the biggest upper limit and, 

(BB) method has the smallest upper limit. While the (A) method has the highest lower limit, 

where the bootstrap methods (BB), (Bt), and (SAM) have the smallest lower limits. However, 

for average length, the best method that has the smallest average length, and the best method 

is (BB) MAETHOD. In addition to. The another applied case wheat experiment the results of 

limits, the (Bt ) has the biggest upper limit  and Morigiti and Bulmer have the smallest upper 

limit .While ,Bross has the highest lower limit ,Where the And Ban has the smallest lower 

limit. However, for average length, the best method that has the smallest average length, and 

the best method is Bross method.  

KEYWORDS: Unbalanced One-Way Random Effect Model; Interval Estimation; Variance 

Components; Bootstrap Confidence Interval; Quadratic Estimators; Monte Carlo Simulation. 

 

INTRODUCTION 

The Thesis Problem  

This study, discuss the problem of constructing confidence intervals for the ratio of variance 

components in the unbalanced random one-way model is investigated, Wald (1947) out lined 
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an exact method for constructing such interval. It is rather difficult to computer since it 

involves the solution of two non-linear equations. 

In recent years, several attempts had been made to use analysis of variance (ANOVA) and the 

resulting variance components estimates to estimate the reliability of a measurement 

procedure. Thus, interval estimation of creation function of variance components is of interest 

to researches in all fields of applications in which the variance components model is used. 

Several authors have proposed confidence intervals for linear functions and ratios of variance 

components. 

For the most part, these intervals are approximate with unknown exact probabilities 

associated with their coverage. In this search, a technique is given for the construction of 

simultaneous confidence intervals for the values of all continuous functions of the variance 

components in a balanced, general random linear model. These confidence intervals are 

conservative that is, the actual confidence level cannot be less than any preset value. The 

proposed technique is easy to apply, as it only requires the optimization of a given continuous 

function of the variance components over a bounded region. To evaluate the variance among 

the laboratories and the variance of testing error, a confidence interval on this sum of 

variances will provide more information about the process than will a simple point estimate. 

The problem of constructing bootstrap confidence intervals for percentiles of the model is 

considered seven bootstrap approximate methods. They are used to construct these 

confidence intervals. The bootstrap algorithm Efron (1979, 1987, and 1992) is used to 

construct confidence limits for all methods. The comparison between confidence intervals 

lengths will be done using small, moderate and large sample sizes. 

 

REVIEW OF PREVIOUS STUDIES 

Several methods have been proposed for the construction of confidence intervals for variance 

components in some particular linear models. These include procedures by Satterthwait 

(1941), Bross (1950), Tukey (1951), Morigiti (1954), Bulmer (1957), and Williams (1962). 

These procedures are approximate and do not state the exact probabilities associated with 

their coverage. Boardman (1974) to investigate the actual probability of coverage for several 

of these procedures conducted a comparative Monte Carlo study. Satterthwaite (1946) and 

Wald (1947) continue to be popular among practitioners, and Welch (1956) discussed 

problems involving linear combinations of variances and offered approximate method for 

these problems. In a more recent paper, Burdick and Sielken (1978) described a procedure to 

construct unbiased estimator for a linear combination of variance components in an 

unbalanced nested classification. They showed that this estimator has an exact chi-square 

distribution and can be used to form an exact confidence interval on the linear combination of 

variance components. 

An improvement of their procedure with respect to degrees of freedom (d.f) and the particular 

linear combinations considered was given by Seely (1972). Graybill and Wang (1980) 

proposed a method for obtaining confidence intervals on non-negative linear combinations, of 

variance in a balanced random model. In this method, large sample confidence limits, 

developed on the basis of the asymptotic normality of the uniformly minimum variance 
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unbiased estimator of the ratio are modified so they might be more exact for small or 

moderate sample sizes . 

Interest in interval estimation of function of variance components, other than linear, has 

developed during the last two decades. Breomling (1969) using a result by Kimball (1951), 

obtained conservative confidence interval for the variance ratios of balanced random models. 

The exact confidence coefficients associated with Breomling`s confidence regions were 

obtained by Sahi and Anderson (1973) in terms of the upper tail of the probability integrals of 

the inverted Dirichlet distribution. Graybill and Wang (1979) presented approximate lower 

and upper confidence intervals for three special functions of the variance components in a 

balanced random two-fold nested classification model. 

Recently, approximate methods have been proposed by Boardman (1974) compared using 

simulation technique between several exact method for the variance components in the 

random one-way model. Several approximate methods are also available and easier to 

compute. 

Thomas and Hultiquist (1978) introduced the harmonic mean method while El-Bassiouni 

(1978) introduced the arithmetic mean method. The terms harmonic and arithmetic arise from 

the fact that the harmonic and arithmetic mean of eigenvalues of a certain covariance matrix 

were used to replace the individual eigenvalues. Thus simplifies the computation. El-

Bassiouni (1978) outlined also a conservative method along the lines of Breomling (1969), 

which guarantees at least the nominal coverage. 

Graybill and Wang (1980) have proposed other methods, and Khuri (1981) provides a brief 

review of the research in this area. Previous methods have been developed for designs in 

which sum of squares are independent and have chi-square distribution. In unbalanced 

designs, however the sum of squares in general does not pass these properties, and use of 

these methods may be in appropriate. 

El-Ganzouri (1986) conducted a Monte Carlo simulation study, which resulted from 

modification of arithmetic method as compared with the exact and new approximate method 

also given and included in the comparison. About that there are a lot of new studies such as, 

Ming Wang (1990) talked about the lower abound of confidence co efficient for a confidence 

interval on variance components, Weerahandi (1993) talked about generalizing confidence 

internalizing confidence intervals, Aitkin (1999) talked about a general Maximum likelihood 

analysis of variance components in generalized linear models. 

More recently, Zhang and Woodroof (2002) talked about credible and confidence sets for the 

ratio of variance components in the balanced one-way model. Bottai and Orsini (2004) 

discussed confidence intervals for the variance components of random effects linear models. 

The latest one was Sonogo (2008) that discussed tolerance intervals in random effects model. 

Objective of the Study Research 

In this thesis, a Monte Carlo simulation study is conducted to examine and compare the 

performance of the above-mentioned exact and approximate methods and bootstrap 

confidence interval methods are given. In chapter (2) covers the basic background .The one-

way random effects model for unbalanced data is defined; a mathematical expression for the 

model is presented and probability distributions for its components are discussed. It also 
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discuss the exact and approximate confidence interval formulas for the ratio of the variance 

components (ρ). Chapter (3) covers Bootstrap methods of confidence interval for variance 

components, and then we will explain the comparison between these different methods, in 

chapter (4) using Mote Carlo comparison And Numerical results of the simulation between 

exact approximate methods and bootstrap methods and agriculture application .Finally, in 

chapter (5) discussion of applied cases. 

The Confidence Intervals 

Section (2.1) is devoted to the confidence interval for the variance component. Section(2.2) 

introduces the one-way model, discussed confidence interval formulas for the ratio of 

variance components in exact methods. While, in section (2.3), the same confidence interval 

for the approximate methods are introduced.  

The One-Way Model. 

In a sample of (t) treatments, and that  have (n) experimental units, at our disposal to be used 

to compare their effects. Suppose that the (n) units are divided into (t) groups each having (ni) 

units, (i = 1,2,……,t), where, the units in group (i) receive treatment (j), let (yij) denote the 

response of the jth units in the ith group. We consider the model:- 

                                                                             , i=1,……….t  . 

, j=1,………  . 

, n=    . 

Where, 

→ is the response of the jth observe in the ith treatment, 

  → is the over-all mean, 

 → is the effect of treatment (i),  . 

→is the independently of the random error,  , 

In the matrix form, we have:- 

                                                            

Where ( ) is an (n 1) vector of ones, 

A=  =Diag( )     ,                             , i = 1,…….t . 

→is (t 1) vector of the treatment effects. 

→is (n 1) vector of the random error. 

We can note that  

 

http://www.eajournals.org/


European Journal of Statistics and Probability 

Vol.4, No.2, pp.1-48, June 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

5 

ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

             ,   and    . 

            Hence  . 

Let (H) be an [n (n-1)] matrix with ith column. 

            /                                                       

The columns of (H) form an orthonormal basis for the subspace of vectors orthogonal to [sp 

( )]. 

 .                     ,  .                                        

See LaMotte (1976). Seely (1972) showed that ( ) is maximal location invariant 

statistic. 

. 

            . 

Where (C) is an (n n) symmetric matrix .In every  quadratic in(y)is linear 

function of ( ,and(y)is normally distributed with mean ( ) and covariance 

( ). 

Where, 

  And    W=  . 

Hence       ). 

Let the spectral decomposition of (W) be given by W =   , and following Olsen, 

et.all (1976), let 0 =  be the (k+1) distinct eigenvalues of ( ) 

with multiplicities ,……., , respectively, and for i =1,……, k ( ) because (n > t), 

where ( ) denotes the orthogonal projection operator on subspace on the eigen-vectors 

corresponding to , Hence the density function of:- 

                  . 

                   . 

       Let,                                              (2.1) 

Hence  …..,  constitute a minimal sufficient statistic for the family of distributions 

induced by (Z). Moreover the sufficient statistic ( ,…., ) is complete when (k=1) in case 

(  .... = ) (balanced design) or in case (t=2) otherwise (k=1), we see that there 
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doesn't exist a complete sufficient statistic in case of unbalanced (un equal sample sizes) 

designs, unless we have only two groups .from now on we assume that the ( ) are not all 

equal and that(t>2). 

See LaMotte (1976) and El-Bassiouni (1978) for the following results are 

established by El-Bassiouni (1978). 

                                                                                                               

(2.2) 

Where,                                                                    

And,                                                    

       The quadratic forms   are related to (ANOVA) sums of squares .In fact, 

Olsen, et, all (1976) showed that. 

                                                                                          

(2.3) 

Which the sum of squares is within groups, where, 

 .         Further, since. 

. 

Where, , we have that, 

 . 

                               . 

                                                                                      (2.4) 

Which is the sum of squares between groups, Moreover, the degrees of freedom are given 

by:- 

                                                                                                               

    (2.5) 

And 

                                                                                                              

     (2.6) 

See El-Bassiouni (1978).  From the model: 
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      . 

                    (Yij-Ῡ..) = (Ῡi.-Ῡ..)  + (Yij-Ῡi.) 

     ↓            ↓                     ↓ 

Total      treatment            error   

 .  SSTOT      =     SSB    +          

SSW. 

ANOVA 

F EMS MS SS d.f Source  

 . 
. 

=  

MSB=  

MSW=  

 S

SB 

SSW 

t-1=  

n-t=  

Between( ) 

Within ( ) 

   . SSTOT n-1 Total 

From ANOVA table: 

  .            . 

And, 

MSB=   ,       .   

 .   . 

And from the model. 

 .     . 

 . 

           . 

So  

, and   .  

The Exact Confidence Interval Formulas for the Ratio of the Variance Components () 

This section, introduce exact formulas for constructing confidence interval for the ratio (ρ), 
which is the between variance components to the within variance components. 

 . 
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There are different methods of obtaining confidence intervals for the among groups 

component of variance in the design have been presented. This methods include procedures 

proposed by Wald (1947), Bross (1950), Tukey (1951) , Andrson and Buncroft (1952) , and  

Williams (1963). 

   

The exact confidence interval for (ρ) given in Wald (1947) to construct a confidence interval 

for (ρ) is as follows:- 

 .  With       . 

The confidence intervals for the ratio (ρ) of the variance components can be constructing to 

this end. Let  be such that  . 

Wald (1947) considered the problem of constructing confidence intervals for (ρ). 

             .                          

He proposed an exact interval whose upper end point is the root in (ρ) of the equation.   

         .                

Where  be F-distribution with degrees of freedom and and level of 

significant ( ) where ( ) on the other hand, the lower end point is the root in (ρ) 

of the equation.  

          .                     

 . 

           . 

Bross Method 

According to Bross(1950) derived the confidence intervals for the ratio (ρ) considered  here 

,but these limits fail to satisfy certain boundary properties .And his upper limit would be 

negative if:- 
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         . 

          Where   . 

           And     . 

        .  ,  . 

Let  be the upper ( ) percentage point of the (F) distribution with ( ) and (∞) 

degrees of freedom (d.f). And let  be the lower ( ) percentage point of the (F) 

distribution. 

The confidence interval limit for  is . 

  Upper limit= .        Lower limit 

=  . 

Confidence interval limits for ρ. 

 Upper limit = .  Lower limit =  .                               

Tukey Method  

In general servey , paper on "Component in Regression" proposed an alternative to Bross's 

(1950) fiducially bounds because Bross`s bound did not satisfy the "usual" boundary 

conditions .Tuke y (1951)proposed a modified version of the upper bound but did not 

elaborate on it . 

-Let  be the upper(1- ) percentage point of the F-distribution with ∞ and  degrees 

of freedom .And let  be the lower  percentage point of the F-distribution, and it`s 

like  and  be the upper and lower percentage point of F-distribution with 

 and  degrees of freedom.  

The confidence interval limit for   is 
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 Upper limit =   .Lower limit 

=  . 

Confidence interval limits for ρ is . 

Upper limit  = .       Lower limit  =    .                                        

   Where,   . 

Anderson and Bancroft Method [ANDBAN]. 

While discussing some of the available procedures for confidence interval for  ,Anderson 

and Bancroft (1952) proposed modified version of Bross`s procedure which satisfies the 

boundary conditions unless  .In the unlikely situation , the upper bound will 

be negative. 

Let  be the upper (1- ) percentage point of the F-distribution with  and  

degrees of freedom. And let   be the lower  percentage point of the F-

distribution. 

The confidence interval limit for   is. 

Upper limit  =     .             Lower limit =   . 

Confidence interval limits for ρ is. 

Upper limit   =   .               Lower limit =  .                                               

Williams Method [WIL] 

William (1962) independently obtained a (1-2 ) lower bound on the confidence interval 

coefficient by studying a graph of ( ).Versus ( ) with a plot of four 

lines which bound the two interval sets. After examining a projection of this intersection set 

on the ( ) axis, he established lower confidence co-efficient which we have found to be too 

conservative. 
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Define and as the upper (1- ) and lower ( ) percentage points of the Chi-

square distribution with degrees of freedom respectively. 

The confidence interval limit for  is . 

 Upper Limit = .Lower Limit= 

.   

Confidence interval limits for ρ is. 

 Upper Limit =  . 

Lower Limit = .                   

Williams (1962) used a result of Tukey (1951) where Williams limits are shown  and so 

carefully drive  by Williams and they were suggested by Tukey a number of years earlier 

(Williams-Tukey method{WILLTUK}). 

-Let  be the upper (1- ) percentage point of the F-distribution with ∞ and  degrees 

of freedom .And let  be the lower  percentage point of the F-distribution, and it`s 

like  and  be the upper and lower percentage point of F-distribution with 

 and  degrees of freedom. 

Confidence interval limits for (F) is:- 

Upper limit =   .                                 Lower limit =     . 

Confidence interval limits for ρ is. 

Upper limit =   .                                 Lower limit  =   .                                                

There are many people who discussed the exact tests, Seely and El Bassiouni (1985) 

considered extensions of Wald`s variance components tests. They discussed confidence 

intervals for a variance ratio in unbalanced mixed linear models… etc. 

In the next section we will reviewed the approximate methods. 
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Approximate Methods  

In this section, we will discuss the confidence interval formulas for the ratio of variance 

components in approximate methods, and these include procedures proposed by Satterthwait 

(1946), El-Bassiouni (1978), and EL-Ganzouri (1986), then let  denote the unweight mean 

of group means. 

                                                                           

              

                                                                                                  

(2.7)         

                                                                                               

Where, ( ) is the harmonic mean of the sample size, and (  ) is the sample variance of 

treatment means. 

Satterthwait  Method [A] 

According to Satterthwaite (1946) showed that  is distributed 

approximately as F (t-1, n-t) =  . 

Where  

                .  

 Is the variance between mean of squares, see (2.3).    Is the variance within mean of 

squares, see (2.4). 

               Hence    .     And      . 

The confidence interval for  is thus given by:- 

          .                   

        And Satterthwaite showed that the distribution of  is 

approximately the distribution   , where the quantities  and  are 
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chosen. Such that , the first two moments of approximate distribution are equal to those of the 

exact one. 

Moriguti Method  

Morigiti (1954)suggested the form of Tukey (1951)as an alternative to Boss’s (1950) his 

procedure with others developed up to that time. 

The confidence interval for  where  is given by:- 

         Upper limit =     . 

         Lower limit  =       .            

Confidence interval limits for ρ is. 

        Upper limit   =                             

         Lower limit  =                

Bulmer Method  

According to Bulmer (1957)this approximate confidence interval is found for the expected 

value of the difference between two quantities which are independently distributed 

proportional to ( ) varieties. 

The confidence intervals limits for  is:- 

Upper limit =     . 

Lower limit =    . 

Confidence interval limits for ρ is. 

           Upper limit =                 

            Lower limit =    
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Thomas and Hultiquist Method [H] 

Thomas and Hultiquist(1978) showed that [ ] is distributed approximately 

as . in this case, the confidence interval for  is given by : 

   Upper limit =  .                     Lower limit =  .                                         

Where,               
 

    . 

   We call this the harmonic method (H). 

El-Bassiouni Method  

See El-Bassiouni (1978), leads to the following relationship, 

,                                

and,
        

   ,                                                         

where ,    

             a1 = i

k

1i
irλ



 

    

                                                                                        

And, 

               a2    = i

k

1i

2
i

rλ


      

                                                      

The Satterthwait approximation thought to be fairly accurate for nearly balanced designs, 

nearly equal  .For such models we note that 

                   .                                                         

Hence     
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 . 

                         (t-1).                             

It is interesting to note that   is the arithmetic mean of the , it is also the co-efficient of 

 in the expression of the expected value of  . We are going to call this method (based on 

Satterthwait approximation), the arithmetic mean method A. 

EL–Bassiouni (1978) gave a conservative confidence interval as a conservative upper limit 

for ρ, which is given by:-  

                                               

Where the (  are such that  .On the other hand a 

conservative lower limit for  is given by :- 

                                                 

A numerical study of Sahi and Anderson (1973) reveals that the conservative confidence 

coefficient are very good approximations to the exact ones. 

El-Ganzouri Method [A.ADJ]  

According to El-Ganzouri (1986)  and from the approximate degrees of freedom  

and instead of .El-Ganzouri considered the following  confidence interval for  

is as:- 

     Upper limit .      Lower limit 

 .                             

This is the arithmetic adjusted mean method (A.A DJ). 

 

BOOTSTRAP CONFIDENCE INTERVAL 

Introduction 
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 In (1979) Efron introduced the Bootstrap approach as an alternative resampling methodology 

to extend the well-known in estimating the bias and standard errors of statistics in order to 

construct reliable confidence intervals. The mechanism of this approach provides as what is 

namely the bootstrap distribution as well as the  approximate sampling distributions, which is 

shown to be at least as good as the Gaussion approximation, The Bootstrap distribution is 

better than the approximate normal distribution, see Efron (1992). In the next chapter we will 

compare the numerical results between different all d the method of estimation for the 

confidence interval of ρ . 

The Bootstrap estimate of confidence interval 

The bootstrap was introduced in (1979) by Efron as a computer_ based method for estimating 

the interval of (  ), it the best to the advantage of being completely automatic. 

The Bootstrap methods depend on the notion of a bootstrap sample. Let  be the empirical 

distribution. Putting probability  on each of the observed values  

.A bootstrap sample is defined to be a random sample of size  drawn from  say 

 , 

     .                                                               

 Bootstrap samples are generated from the original data set. Each bootstrap sample has 

 elements generated by sampling with replacement  times from the original data set 

.Bootstrap replicates  are obtained by calculating the value of the 

statistic  on each bootstrap sample .Finally, the variance components of the values 

 are our estimates of the variance components of  . 

The bootstrap algorithm begins by generating a large number of independent bootstrap 

samples  ,each of size  typical value for (B) , corresponding each 

bootstrap sample is a bootstrap replication of   .namely  ,the value of the statistic(s) 

evaluated for  ,If  is the sample median, for instance, then  is the median of 

the bootstrap sample . The bootstrap estimate of standard error  is the standard 

deviation of the bootstrap replication as, 

 ,                       

                                                                                              

(3.1) 

                                                              

(3.2) 
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The probability calculation (3.1) is done with the true mean equaling , so . 

we will denote confidence intervals by , so  and 

 for the interval in(3.2) .In this case, we can see that the interval 

 has probability exactly (1-2 )of containing the true value  of 

ρ . The probability that ρ lies below the lower limit is exactly ( ) ,as is the probability that  

(ρ) exceeds the upper limit ,so that:- 

         
 ,                                               (3.3) 

The fact that (3.3) hold for every possible value of (ρ) is what we mean when we say that 

a  confidence interval  is accurate .It is random variables being  and  

 , there for:- 

When   in general so, 

                  
                                                                       

is called the standard confidence interval with coverage probability equal , or 

confidence level 100%, % or more simply it is called a confidence 

interval for (ρ) .  .but the more accurate form as follows:- 

 

A confidence interval  with property (3.3) is called equal-tailed, see 

Efron (1992) .This refers to the fact that the coverage error ( ) is divided up evenly 

between the lower and upper ends of the interval. Confidence intervals are usually 

constructed to be equal-tailed and we will restrict attention to equal-tailed interval, in our 

discussion notice also that property (3.2) implies property (3.1), but not vice-versa. That is, 

(3.2) requires that the one-sided miscoverage of the interval be  on each side, rather than 

just an overall coverage of . 

With supposing that the true ( ) were equal to ( ), say. 

                           .                                                                

Many types for the bootstrap confidence intervals had been introduced in different statistical 

areas and either in parametric or non-parametric settings. The simplest bootstrap confidence 

interval is that one for which the nominal quantiles of the bootstrap distribution of the 

statistic under study. This is the so-called basic bootstrap confidence interval. Another more 

important type ,which is proved to be more accurate , is the bootstrap-t (also called the 

percentile-t)confidence interval introduced first by Efron(1979).This method is based on 
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using the quantiles of a studentized bootstrap statistic , generalizing thus the student-T 

method in constructing confidence intervals . 

 The approximate  equitailed confidence interval in this case will be that with 

confidence limits either , with and  are the -quantiles 

of the standard normal and standard (t) distribution, respectively. These approximate methods 

remain unacceptable in situations where, say, it is known that  is highly skewed or spare 

in order to stabilize the variance Efron (1992). 

Where, be the sampling distribution function of the quantity , and  be its 

bootstrap approximation with  the variance or the estimated variance of . 

Efron (1987) introduced approximate confidence intervals based on bootstrap compilation 

like the standard intervals; these can be applied automatically to almost any situation. Though 

at greater computational expense than (3.1). Unlike (3.1), the bootstrap intervals transform 

correctly .Each bootstrap sample gives the bootstrap replication of  . 

Methods of Bootstrap Confidence Interval for The Ratio of Variance Component () 

Many types of bootstrap confidence intervals were introduced and have been applicable a 

wide range of both theoretical and applied field. In this section, the bootstrap methods to 

construct approximate confidence intervals were described and reviewed. These methods are 

standard approximate method (SAM) proposed by Lawless (1982).Bootstrap-T (Percentile-

T)method ,and Percentile Bootstrap method proposed by Efron (1979) ,The bias -corrected 

percentile method (BC Method) . Accelerate Bias –corrected method (BCa Method) 

,proposed by Efron (1982) and The approximate confidence Interval (ABC Method ), 

proposed by Efron (1987) all these methods will be used for constructing approximate 

confidence interval for  the ratio of variance components . 

The Basic Bootstrap Confidence (BB) 

Efron (1992) tried to create a α/2 confidence interval for a parameter ρ based on a sample 

estimate   , we determine the distance that we plausible expect  to fall from ρ at the α/2% 

level. As we don`t know the distribution of  and their percentiles, we take the 

corresponding percentiles of the bootstrap distribution. Under the assumption that the 

percentiles of the sampling distribution and the bootstrap distribution are very close, see 

Efron (1992). 

          % .                        

The approximate ( ) % confidence interval of ρ is 
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    , 

        is ( ) bootstrap percentile confidence interval for (ρ*) Sample. 

The Standard Approximate Interval (S A M) 

The exact confidence interval for percentile  ,have been obtained by Monte Carlo 

simulations to estimate the percentage points of the distribution of a pivotal quantity that can 

be used to find confidence limits for percentiles, and  .It developed procedures , for 

complete ,this method which are passed on the asymptotic normality of the unknown 

parameters. According this method  is the mth quantile of the standard normal 

distribution function. Using (SAM), the approximate ( ) % confidence interval of ρ is  

                   .     

    Where,    ,   

 And  Is the standard deviation of the  sample. 

 ,Where  is the mth quantile of the standard normal distribution. 

The Bootstrap-t Interval (BT  

Where  represents the student`s –t distribution on (n-1) degrees of freedom. Using the 

approximation, our interval with  denoting the α/2 th percentile of the (t) distribution 

on (n-1) degrees of freedom the use of t distribution doesn`t adjust the confidence interval to 

account for sekwness in the underlying population. Idea behind the bootstrap–t method is 

easier to describe than the percentile-based bootstrap intervals in practice, however, the 

bootstrap –t can give somewhat erratic results and can be heavily influenced be a few 

outlying data points. Using (bootstrap-t). 

the approximate (1-α) % confidence interval of ρ is 

                                  

       , 

  , . 

The Percentile Bootstrap Interval (PB) 
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Confidence limits can be made more accurate by working on transformed scale. The 

percentile intervals are those approximate intervals which implicitly exploit the properties of 

using good transformations of the parameter space without any need to know such 

transformations explicitly.  

Much better is to use the approximate (student-t)distribution for the studentized quantity 

 with (  is an asymptotic estimate of  .The variance of ,the 

approximate  equitailed confidence interval in this case will be that with confidence 

limits either  . With ( ) and ( ) are the -quantiles of the 

standard normal and student-t distribution, respectively. These approximate methods remain 

unacceptable in situations. Where, say, it is known that ( ) is highly skewed or the variance 

is unstable. In such case, the approximation can be refined by using transformations. Usually, 

the sekwness is due to the variability of the variance with respect to  , which needs the 

transformation of the parameter space in order to stabilize the variance. Practically, using the 

resampling techniques , generate a sufficient large number (B) of bootstrap resample of size 

(n)from the original sample , from each bootstrap resample (b) , b=1,2,…….,B. Compute the 

value of the estimator ,denoted by  .The percentile  can be estimated from 

the histogram of . Precisely   is the value such that:- 

. 

The previous discussion suggests how we might use the percentiles of the bootstrap 

histogram to define confidence limits .This is exactly how the percentile interval works .A 

bootstrap data set ( ) is generated  according to , and bootstrap replications 

  are computed .Let ( ) be the cumulative distribution function of  . 

The percentile interval is also "range-preserving", i.e. the interval full within the allowable 

range of the parameter if there is a restriction on the values the parameter can take. This 

because ( ) obeys the range of the parameter, and both end points of the interval are values 

of the bootstrap – statistic ( ) .Confidence intervals that are range-preserving tend to be 

more accurate and reliable. 

On the other hand, a whole different class of confidence intervals introduced and refined by 

Efron(1979,1987), consists of the percentile and the adjusted percentiles methods, namely 

.The accelerated bias–corrected (BCa) interval. These interval has the advantage of using 

implicitly all the properties of good transformations without any need to know such 

transformations, taking thus into consideration the bias and sekwness in the distribution 

function of the underlying statistic. He (1992) introduced the computational burden in the 

(BCa) method. 
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Indeed, like any estimated distributed distribution, the convergence or consistency of (  ) to 

( ) can be measured by the limit of the error:- 

                   . 

Its magnitude, as indicate by Efron (1979) is due to the different between  or ( ) and F, 

together with nature of functional  under study, the study of such error need analytical 

efforts. 

To formulate our problem, Let y= (  be a random sample of size (n), drawn 

from a population with unknown distribution function (F), and let ( ) be the corresponding 

empirical distribution function. 

Moreover, Let ( ) be the sampling distribution function of the quantity   , and ( ) be 

its bootstrap approximation with the variance of the estimated variance of  . 

Much better is to use the approximate (student-t) distribution for the studentized quantity 

( ) with ( ) is an asymptotic estimate of ( ) the variance of ( ). 

Thus, if  is a transformation such that  has a symmetric distribution then the 

bootstrap  of the distribution of will be equal to 

 with  the (  quantile of the bootstrap histogram 

of [  

The basic bootstrap confidence interval for  will be:- 

                          . 

Which by applying the inverse transformations  is transformed back to the ( ) 

bootstrap percentile confidence interval for ( ) , that is :- 

                              ( )                                                                                

It involves creating many (≤5000) bootstrap samples and calculating a ( ) value for each 

bootstrap sample  then a 95% interval for ρ , for example ,would be :- 

                          .   

     Is ( ) bootstrap percentile confidence interval for (ρ*) Sample. 
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The Residual Bootstrap Interval(RM)  

For this method, many (≤5000) bootstrap samples are created and  is calculated 

for each bootstrap sample. A 95% interval for ρ, for example m would then be:- 

                      .   See Efron (1992) 

The approximate ( ) % confidence interval for . 

                                                                                           

   is ( ) bootstrap percentile confidence interval for (ρ*) Sample 

   ,  . 

Are the bootstrap samples, which generated from  sample. 

The Bias-Corrected And Accelerated Interval (BCa) 

Efron (1987) introduced a new approximate bootstrap confidence interval as a generalization 

of using transformation theory , he showed that of the second order accuracy of percentile 

bootstrap intervals can be gained by assuming a monotone increasing transformation  , 

for which the asymptotic distribution of the transformed estimator  is normal , 

and that its bias in estimating  is ( ), with some variance depend on  . The 

idea is to build the interval for the transformed parameter , then transform it 

back using ( ) to the scale of ( ).Although ( ) is not always known, the use of the 

bootstrap distribution makes it possible to build the interval for ( ) without any knowledge of 

the form of transformation ( ) as long as it is only assumed to be existent. 

It is more natural to assume that the variance of is a function of . Efron (1987) assumed 

that the standard deviation ( ) is effected by ( ) via an "acceleration" constant (a) that is 

why the method was called accelerated bias- corrected. 

As a modified percentile interval, the (BCa) is still transformation respecting. Moreover, it 

has the additional property of being second order correct and accurate. 

Although the bootstrap-t interval is also second order correct and accurate it failed to be 

transformation respecting. The matter, which draw the attention to the (BCa) interval as the 

most promising approximate bootstrap interval. 

http://www.eajournals.org/


European Journal of Statistics and Probability 

Vol.4, No.2, pp.1-48, June 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

23 

ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

Assume that for some unknown monotone increasing transformation ( ), unknown bias 

correction factor ( ) and unknown sekwness correction factor (a), the transformed estimator 

[ ] for  is asymptotically normally distributed. 

,    i.e.          

   Then , 

.                                                                                      (3.4) 

With 

                                                                                                                     (3.5) 

The derivation of the interval in this from relies essentially on the standard transformation 

form. Note from (3.4) and (3.5) that. 

 

Estimating The Bias Correction Constant (Z0) 

Efron (1987) introduced that:- 

       and . 

Approximating, now, , it gives; , i.e. 

     . 

Practically, it can be computed the following by the proportion of bootstrap replications less 

than ρ, i.e. 

                .                                                                   (3.6) 

It measures the median bias of , i.e. the discrepancy between the median of  and ρ in 

normal units, Efron (1992) 

The Acceleration Constant (a) 

           Efron (1987) showed that equation (3.4)can be written as follows 

                       , 

       Thus, the acceleration constant (a) is may be written as:- 
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                                                                                            (3.7) 

The above three formula are nearly equal for computing the constant (a) in the sense that 

equal ( ) of the coefficient of sekwness for different ways of computing these coefficients in 

different cases. 

For the simple parameter case, let the estimator  have a p.d.f of the family [  is the 

density { }, and define  to be the score function of the family [ ], of the 

form. 

                       .                                                

In this case the formula of (a) is given by:- 

                  , 

Where,  is the sekwness of a random variable of the form  for a 

verification of the (3.7), see Efron (1987). 

In the nonparametric case, an easy formula for estimating the constant (a) uses the Jacknife 

estimation of sekwness coefficient as follows:- 

                                                                                                                   

(3.8)              

Where  is the value of  computed from the original sample with ( ) deleted I.e.    

is the ith delete Jacknife pseudo estimate, and      , 

is thus  the Jackknife estimation of the sekwness coefficient.         

,  is the Cumulative distribution function of  . 

That can be computed from the bootstrap distribution of  without any knowledge of the 

form of .This is the (BCa) interval for ( ). 

Let (a=0) the BCa will be: 
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. 

  And let ( ), we get:- 

,    , 

 So that the interval reduces the percentile interval. 

  ( ), as given before. 

 From another hand, we can discuss this point as:- 

                .                                              

Where, 

            ,   .                          

Depending on .                Then, . 

And   

Finally,                                            

The Approximate Bootstrap Confidence Interval (ABC ) 

Efron (1992) introduced the approximate bootstrap confidence interval (ABC) for the case in 

which  can be defined smoothly in the sample observations. Their main idea was the 

possibility to give an automatic tool to be applied for finding the BCa interval. This can be 

done by approximating the bootstrap random sampling results using Taylor series expansions. 

The matter, which reduces the computational burden by an enormous factor. 

         Having observed , Efron (1992) assumed a multinomial 

distribution with support on the observed data. Formally, if we denote the resampling vector 

by ( ), we assume that ( ) has a multinomial distribution success probabilities 

.Our statistic has the form. .                                                                           

 Delta method approximation for the ( ) is:- 

                      ,                                               

 Where, ( ) is the empirical influence component as:- 
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                 ,                                           

Where ( ) is the ith cording vector . 

         Let  indicate the end point of an approximate is (100), or (  one-side 

upper confidence interval for  then (  is an approximate (100), or (   

two – side interval. 

         A quadratic Taylor series expansion of ( ) gives approximate bias (b):- 

                                                                                                                        

(3.9) 

Where, ( ) is an element of the second order influence function as:- 

              .                                                                           

The second quantity needed for ( ) is the quadratic coefficient as:- 

     .                                             (3.10)      

This coefficient measures the nonlinearity of the function  as we move in the least 

favorable direction .Let,  ,A quadratic Taylor series expansion gives:- 

 

  is called the last favorable direction,  measures the ratio of the quadratic term in 

{  . The size of ( ) does not effect the standard intervals , which treat every 

function  as if it were linear , but it has an important effect on more accurate confidence 

intervals.     The bias correction constant ( ) is a function of   , these 

three constants are approximated by using a small value of  in formulas (3.6),(3.8),(3.9) and 

(3.10) . Then we define:- 

. and estimate  by  

                     .                                                                                      
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it can be shown that  is the total curvature of the level surface   . The 

greater the curvature, the more biased is .     . 

Where ( ) is the cumulative distribution function of . Either form of ( ) approximates 

( ) sufficiently well to preserve the second order accuracy of the (BCa) formulas. The 

definition of  is more like a median bias than a mean bias, which is why  in values 

quantities other than ( ). 

The ABC confidence limit for, denoted  is constructed as follows:- 

              .                                                            

Where,  

                ,             and        . 

The direction  is called the last favorable direction and is discussed the big advantage of the 

ABC procedure is that the constant ( ) and ( ) can be computed in terms of numerical 

second derivatives, and hence no resampling. 

 

NUMERICAL RESULTS OF MONTE CARLO SIMULATION 

Boardman (1974) compared some different method to obtain the confidence intervals for  

in balanced random models using Monte Carlo simulation techniques.  

This chapter aim to compare some exact methods denoted previously by section (2.2)with 

some approximate methods ,see section(2.3) and some bootstrap methods denoted to 

section(3.2) obtain confidence intervals for the unbalanced random one- way model. For all 

comparison we will use the Monte Carlo simulation techniques along the lines of Boardman . 

The criteria of comparisons are the percentage of coverage, average length and The 

comparison is conducted using five of the unbalanced random one- way designs given by El- 

Ganzouri (1986)which are chosen to cover a wide range of unbalancedness and more details 

presented in the following section. 

The Designs of Experiment 

The following designs were selected from those of Thomas and Hultiquist (1978) to study 

confidence interval procedures in case of unbalanced random of one- way model. 
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Table (1): The unbalanced random one- way designs used in our empirical study 

Values of . 
Number of 

groups ( . 
Design(i) 

10,50,500 3 

Thomas and Hultiquist design 

1 

10,10,50,50,500,500 6 2 

2,3,5,7,8 5 

Burnham  design 

3 

2,2,3,3,6,6,6,7,7,8 10 4 

3,3,3,3,3,3,3,3,3,3,3,3,3,3,33 15 5 

In order to compute the confidence intervals using the above mentioned procedures, 

1– Compute the eigenvalues ( ) and their multiplicities ( ). 

2 – Let ( ) be the number of groups having (  observations each. 

In fact, LaMotte (1976) showed that 's are the same as the roots of:- 

             .                                                                    

Let (a) be the number of distant ( ), say,  . LaMotte (1976) 

stated that Newton's method, for solving h (λ) =0, has been found to converge very quickly 

due to the steepness of [h (λ)]. We used this method to compute the  and  for the five 

designs of Thomas and Hultiquist (1978) and Burnham (1975) see El-Ganzouri (1986) . 

Table(2):The Eigen Values and their Multiplicities for Our Designs 

Values of  Values of  Design 

1,1 14.13,94.80 1 

1,1,1,1,1,1 10,14.13,50,94.80,500 2 

1,1,1,1, 2.23,3.51,5.70,7.52 3 

1,1,1,1,2,1,1,1 2.0,2.34,3,3.56,6.0,6.54,7.0,7.74 4 

13,1 3.0,19.80 5 

 

The Simulation 

The confidence intervals of exact methods, other approximate procedures, and the bootstrap 

methods were simulated for the five designs which were proposed by El- Ganzouri (1986).     

The values of  were (0.001, 0.01, 0.1,0.5,1,2,4and8) the results for α=0.05 appear in tables 

of Appendix(i). They were computed using the program and subprograms of Appendix (ii). 

Since the confidence intervals for ρ are based on location and scale invariant pivotal 
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quantities we took  and  , so that ρ  . For each design we generated (k) 

independent chi-square variables with ( ) degrees of freedom, say   and an 

independent chi-square variable with (n-t) degrees of freedom, say,  .Let 

                                         

It be noted that   plays the role of SSW, see (2.3), while  plays the role of  , so , 

        

See (2.4) .Further  

             .    See El-Shahat (1983). 

Monte Carlo and Bootstrap methods are both computer intensive methods used frequently is 

applied statistics. The bootstrap is a type of Monte Carlo method applied based on observed 

data (Efron  , the bootstrap was described by Efron (1979) and he has written much about the 

method and its  generalizations since then thousands of papers have been written on the 

bootstrap . However , in practical application , the bootstrap confidence intervals using some 

form of resampling with replacement from the actual data ,ρ , to generate (B) bootstrap 

samples ,( ) . Often, the data sample, consist of (n) independent units and it then suffices to 

take a simple random sample of size (n), with replacement. 

After, we compute SSB, SSW for every design we will generate SSB*, SSW* the bootstrap 

sample, and generate (B) bootstrap sample from SSB, SSW in order to sample of SSB*, 

SSW*. 

Then we will calculate the value of ρ* from SSB*, SSW* as:- 

      ,        .   Then we will arrange the values of . 

We next compute the confidence intervals for every method using the formulas in sections (2-

2) and (3-3). we scored one if the confidence interval covered ρ, and score zero otherwise the 

simulated percentage of coverage is 100 times the total score divided by 1000 , the number of 

simulations  the results appear in tables (1-1),……(1-5). We squared the standard normal 

variables to get chi-square variables with one degree of freedom and used the additive 

property of independent chi-square random variables with arbitrary degrees of freedom.  

However, when (n-t) was found to be larger than 100 we use the fact  to 

avoid having to generate chi-square random variables with large degrees of freedom. 

Before we compare the methods of obtaining confidence intervals for ρ for unbalanced one- 

way model ,we first point out that Wald`s  method is an exact one but is difficult to compute 
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,since it involves the solution of two non-linear equations , and we compare it with other 

approximate methods which are much easier to compute and with bootstrap methods. 

The Coverage 

The extent or degree to which something is observed, analyzed, and reported. We now 

examine tables (1.1)….(1.5)of Appendix (i), to study the simulated coverage for different 

designs and values of ρ . It should be noted that the nominal coverage is 95.0%. 

Let us consider group (1), which consists of designs (1) and (2). Design(1) has three groups 

with 10,50 and 500 observations , respectively ,design(2) has six groups 10,10,50,50,500,and  

500 observations , respectively .It is thus seen that  more groups and imbalance are 

introduced as we go from design (1) to design(2), also both of the two designs are extremely 

unbalanced. 

Consider tables (1.1) and (1.2) which present the simulated coverage values for designs (1) 

and (2). The conservative upper limit method (CON.UL) and conservative lower limit 

method (CON.LL) have approximately the same coverage value for ρ. These two limits are 

fairly closely with the Wald`s coverage values for every value of ρ. 

On the other hand, the coverage value of the Arithmetic Adjusted Method (A.ADj) coverage 

is higher than Wald`s for every value of ρ. It is also higher than that of (CON.UL) and 

(CON.LL). In fact, (A.ADj) method is more conservative for every ρ. While, the Arithmetic 

Method (A) gives a close coverage to that of Wald for small values of ρ  , ρ≤ 0.01 .However 

,for larger values of ρ, ρ>0.1, the coverage is much lower than the nominal. The Harmonic 

Method (H) coverage almost coincides, with Wald's coverage for large and intermediate 

values of ρ, ρ>0.1, is much Lower than Wald. 

Let us now compare the coverage values as we go from design (1) to design (2). The Wald 

coverage decreases for small values of ρ, ρ≤1.0, however it increases for larger values of ρ, 

ρ>0.1. 

In addition, Bross method is increasing for the all values of ρ in every design. While, Tukey 

coverage decreases for every ρ .and in Anderson and Bancroft (ANDBAN) coverage 

decreases for every ρ . These two limits are fairly closely with William's coverage for every 

ρ. 

In Anderson and Bancroft (ANDBAN) coverage value decreases for small values of ρ, ρ≤0.5, 

However for large values of ρ, ρ>0.5, the coverage value is a constant value, as same as, in 

William's coverage values. From this we conclude that the value of Anderson and Bancroft 

(ANDBAN) coverage is the same values of William's coverage value and it's nearly to Tukey 

coverage values. 

The Arithmetic (A) coverage values are the same values of Anderson and Bancroft 

(ANDBAN) coverage values, this values decrease for small values of ρ, ρ≤0.5. However, for 

larger values of ρ, ρ> 0.5, the coverage values are constant value. 

While, the William and Tukey (WILLTUK) coverage value increases for the small values of 

ρ, ρ ≤ 1. However, for larger values of ρ, ρ>1, the coverage value decreases.  
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In addition, Morigiti coverage values are the same values of Bulmer coverage values, these 

values of coverage decrease for every values of ρ. The Harmonic method (H) coverage value 

increases for every ρ.  

In addition, The Arithmetic Adjusted method (A.ADJ) coverage is higher than the exact and 

approximate methods for every ρ. In fact, (A.ADJ) method is more conservative for every ρ.  

Let us now compare the coverage values as we go from design(1) and (2) .the Wald,  the 

CON.LL, the CON.UL coverage are constant for every ρ. Bross coverage increases for every 

ρ. But about Tukey, Anderson and Bancroft, William and Arithmetic coverage values of ρ 

decreases for small values of ρ, ρ≤ 0.5. However ,for larger values of ρ, ρ> 0.5 ,the coverage 

is a constant value .William and Tukey coverage increases for the small values of ρ, ρ≤ 1 

.However ,larger values of ρ ,ρ >1, the coverage decreases . Morigiti, Bulmer and Arithmetic 

adjusted coverage decrease for all values of ρ. Finally, Harmonic (H) coverage increases for 

every ρ in general. The (A.ADJ) Method is more conservative than the conservative method. 

According to the Bootstrap Methods ,based on design (1) in the standard approximate 

method(SAM)coverage increases for the small values of ρ, ρ≤ 0.1 .However ,for the larger 

values of ρ, ρ>0.1the coverage is a constant. While, The Bootstrap-t Method (BT) coverage 

value increases for the small values of ρ,ρ≤0.5. However, for the larger values of ρ, ρ> 0.5 

the coverage is constant. In addition, The Residual Method (RM) coverage decreases for 

every ρ. The Basic Bootstrap Method (BB) coverage increases for the small values of ρ, 

ρ≤0.5. However, for the larger values of ρ, ρ> 0.5 the coverage decreases.  

However, based on the design (2) in the coverage values of the standard approximate method 

(SAM) decreases for the small values of ρ. ρ≤ 0.1 .However, for the larger values of ρ, ρ> 0.1 

it is a constant. While, the coverage value of Bootstrap-T Method (BT) increases for the 

small values of ρ. ρ≤ 0.1. However , larger values of ρ, ρ> 0.1it is a constant .The Residual 

Methods(RM) coverage value decreases for the small values of ρ, ρ ≤1 .However larger 

values of ρ ,ρ >1 the coverage value is a constant  .The Basic Bootstrap Method(BB) 

coverage value increases for small values of ρ , ρ ≤1 . However, larger values of ρ, ρ>1the 

coverage value decreases. 

Finally, we compute the percentile bootstrap confidence intervals for computing the other 

intervals not for comparing coverage values. If the bootstrap distribution of  is roughly 

normal , then the standard normal and percentile  intervals will nearly agree .The central limit 

theorem tells us that as , the bootstrap histogram will become normal shaped, but for 

small samples it may look very non- normal. Then the standard normal and percentile 

intervals will differ. The argument in favor of the percentile interval should translate into 

better coverage value performance.   

The results of comparison between the coverage values of designs (1) and (2) show that: 

The (BT) coverage values increase for small values of ρ .However larger value is a constant, 

the (BB) coverage values increase for small values of ρ. However, larger values of ρ, the 

coverage values decrease. The (RM) coverage values decrease for every ρ, but in design (2) 

the coverage values decrease for small values of ρ. However, larger values of ρ, the coverage 

values are constant. Finally, (SAM) coverage values and the best method increase in design 
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(1) but in design (2) coverage values decrease for small values of ρ but in twice design 

coverage values are constant. 

Let us consider group (2), which consists of designs (3) and (4). Design (3) has five groups 

with 2,3,5,7 and 8 observations ,respectively, while design(4) has 10 groups with 

2,2,3,3,6,6,6,7,7 and 10 observations, respectively. It is thus seen that more groups and 

imbalance are introduced as we go from design (3) to design (4) , also design(4) is a duplicate 

of design(3). We can consider this group as a typical unbalanced design. 

Consider Tables (1-3) and (1-4) which present the simulated coverage values for design (3) 

and (4).The (CON.LL) and (CON.UL) methods have approximately the same coverage 

values for ρ, which agrees fairly closely with Wald's coverage values. The Bross method 

coverage values increase for every ρ. The Tukey method coverage values decrease for every 

ρ. William method coverage values increase for small values of ρ, ρ≤ 0.1, however, they 

decrease for larger values of ρ>0.1. 

William method coverage values increase for small values of ρ, ρ≤ 0.5 however, they decreases 

for larger values of ρ, ρ> 0.5. William and Tukey method (WILLTUK) coverage values 

increase for small values of ρ, ρ≤ 1, however, they decrease for larger values of ρ, ρ> 1. 

Anderson and Bancroft (ANDBAN) coverage values decrease then increase for small values 

of ρ, the for larger values of ρ. As same as ,n (A) method coverage values and the same 

values of intervals in (ANDBAN) method for the different values of ρ. Morigiti and Bulmer 

method coverage values decrease of every value of  ρ, and they have the same values of 

intervals for the different values of ρ(for every value of ρ). 

The (H) method coverage values increase for every ρ. The (A.ADJ) method coverage values 

decrease for small values of ρ, ρ≤ 0.5, however, they increase for larger values of ρ, ρ>0.5. 

The results of comparison between the cover values of designs (3) and (4) show that: - 

The Wald, the CON.LL, the CON.UL coverage values are constant for every value of ρ 

.Bross and (H) coverage values increase for every values of ρ. But about 

(ANDBAN),William,(A) and (A.ADJ) coverage values  decrease for small values of ρ, ρ≤ 

0.5 .However ,for larger values of ρ, ρ> 0.5 ,the coverage values are constant value .  William 

and Tukey coverage values increase for the small values of ρ, ρ≤ 1. However, larger values of 

ρ, ρ >1, the coverage values decrease .Morigiti and Bulmer coverage values decrease for all 

values of ρ. Finally, Tukey coverage values decrease for every value of ρ in general. The 

(A.ADJ) Method is more conservative than the conservative method. 

According to the Bootstrap Methods, for designs (3) and (4) the standard approximate 

method (SAM) increases for every ρ. The Bootstrap –T(BT) coverage values  increase for 

small values of ρ , ρ≤ 0.5 ,however , they decrease for larger values of ρ, ρ> 0.5 .The 

Residual Method (RM)coverage values increase for small values of ρ, ρ≤ 0.1 , however , they 

decrease for larger values of ρ ,ρ > 0.1 . The Basic Bootstrap Method (BB) coverage values 

increase for every ρ. 

The results of comparison between the coverage values of designs (3) and (4) show that:- 
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The (SAM) and (BB) methods coverage values increase for every value of ρ. The (BT) and 

(RM) methods coverage values increase for small values of ρ, however, this coverage values 

decrease for larger values of ρ. Finally, (SAM) coverage values and the best method in 

bootstrap methods. 

Let us consider group (3), which consists of design (5). Design (5)has 15 groups with 

3,3,3,3,3,3,3,3,3,3,3,3,3,3and 33observations, respectively, this design present a nearly 

balanced design with an odd group containing 33 observations . It thus seems that more 

groups are introduced as we go from groups (1) to group (3). 

 Consider Tables (1-5) which present the simulated coverage for design (5). 

The (CON.LL) and (CON.UL) methods have approximately the same coverage values for all 

values for ρ, which are too closely with Wald's coverage values. The Bross method coverage 

values increase for every value of ρ. The Tukey method coverage values decrease for every 

vale of  ρ. William method coverage values increase for small values of ρ, ρ≤ 0.1, however, 

they decrease for larger values of ρ>0.1. 

William and Tukey method (WILLTUK) coverage values increase for small values of ρ, ρ≤ 

1, however, it decreases for larger values of ρ, ρ> 1. 

Anderson and Bancroft (ANDBAN) coverage values increase for small values of ρ, ρ≤0.1, 

however, they decreases for larger values of ρ, ρ>0.1. As same as in (A) method coverage 

values and the same values of intervals in (ANDBAN) method for the different values of ρ. 

The coverage values of Morigiti and Bulmer method are constant for small values of ρ, ρ≤ 

0.01, however, they decrease for larger values of ρ ,ρ> 0.01, and they have the same values of 

intervals for the different values of ρ( for every ρ). 

While, the (A.ADJ) method coverage values decrease for every ρ. The (H) method coverage 

values increase for small values of ρ, ρ≤ 0.5, however, they are constant for larger values of 

ρ, ρ>0.5. 

The results of comparison between the coverage values of designs (5) show that:- 

 the Wald,  the CON.LL, the CON.UL coverage values are constant for every value of ρ 

.Bross coverage values increase for every ρ, but about (ANDBAN) ,William,(A) and 

(WILLTUK) coverage values increase for small values of ρ, however , for larger values of ρ . 

Morigiti and Bulmer coverage values decrease for all values of ρ. (H) coverage values 

increase for small values of ρ .However, they are constant for larger values of ρ. Finally, 

Tukey and (A.ADJ) coverage values decrease for every value of ρ in general.  

The (A.ADJ) Method is more conservative than the conservative method. 

On the other hand , the coverage values of Bootstrap Methods, for designs (5) the standard 

approximate method(SAM)coverage values increase for small values of ρ , ρ≤ 0.5 ,however, 

they decrease for larger values of ρ, ρ> 0.5.  The Bootstrap –T (BT) coverage values increase 

for small values of ρ, ρ≤ 0.5, however, they decrease for larger values of ρ, ρ> 0.5 .The 

Residual Method (RM) coverage values increase for small values of ρ, ρ≤ 0.1, however, they 
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decrease for larger values of ρ, ρ > 0.1. The Basic Bootstrap Method (BB) coverage values 

increase for small values of ρ, ρ≤ 1, however, they decrease for larger values of ρ, ρ> 1 

Let us now compare the coverage values as we go from design (5).  The (SAM), (BT), (RM) 

and (BB) methods coverage values increase for small values of ρ, however, they decrease for 

larger values of ρ. Finally, (SAM) coverage is the best method in bootstrap methods. 

The Average Length 

The difference between the upper and lower limits.Let us examine Tables (2.1),…,(2.5) of 

appendix (i) , to study the simulated average length for different designs and values of ρ. 

First, we notice that the average length decreases as we go from group (1) to group (3) also 

that average length increases as the ρ values increases for each design. 

Based on the average length, the results of tables (2.1) and (2.2) show that the results for 

design (1) and (2) for exact and approximate methods. William and Tukey (WILLTUK) 

Method has minimum average length for small values of ρ, ρ ≤0.5, however, for large values 

of ρ,0.5<ρ ≤4 , the average length continues in increasing  , but in larger values of ρ , ρ>4 ,the 

average length is the maximum value. The (A.ADJ) Method maximum average length for 

every ρ except ρ=8. The (WILLTUK) Method average length is the maximum, but in design 

(2) .The (A.ADJ) method, average length is the maximum values for every ρ. Wald method 

average length is larger than (WILLTUK) average length. But it is lower than the other 

methods for small values of ρ ,ρ ≤1 ,however ,for large values of ρ ,ρ>1 Wald's average 

length is minimum value. 

While ,the (ANDBAN) Method average length equal the (A) Method average length for 

every ρ and the (Tukey) Method average length equal the (Morigiti) Method average length 

for large values of ρ, ρ> 0.01.  On the other hand, the results of other methods show that:- 

Increasing for every ρ, we can summarize the previous results of exact and approximate 

methods in design (1) as follows:- 

Table (3) :-Results of Table (2.1)for exact and approximate methods 

Ρ Comparing between methods 

0.001 WILLTUK<BROSS<WALD<TUKEY<MORGITI<BULMER<WIL<ANDBAN=A

<H<A.ADJ 

0.01 WILLTUK<WALD<BROSS<TUKEY<MORIGITI<BULMER<WIL<ANDBAN=

A<H<A.ADJ 

0.1 WILLTUK<WALD<TUKEY=MORIGITI<BULMER<WIL<ANDBAN=A<H< 

BROSS<A.ADJ 

0.5 WILLTUK<WALD<TUKEY=MORIGITI<BULMER<WIL<ANDBAN=A<H< 

BROSS<A.ADJ 

1 BROSS=TUKEY=MORIGITI<WILLTUK=BULMER<WIL<ANDBAN=A<H<WA

LD<A.ADJ 

2 WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<WILLTU

K<A.ADJ 

4 WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<WILLTU

K<A.ADJ 
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8 WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS 

<A.ADJ<WILLTUK 

 

Table (4) :-Results of Table (2.2)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK<WALD<BROSS<TUKEY<ANDBAN=A=WIL=MORIGITI=BULMER

<H<A.ADJ 

0.01 WILLTUK<WALD <TUKEY=ANDBAN=A=WIL=MORIGITI=BULMER<BROSS 

<H<A.ADJ 

0.1 WILLTUK<WALD <TUKEY=ANDBAN=A=WIL=MORIGITI=BULMER<BROSS 

<H<A.ADJ 

0.5 WILLTUK<WALD<BROSS<WIL <ANDBAN=A 

<BULMER<TUKEY=MORIGITI <H<A.ADJ 

1 WALD<BROSS<H<WIL<ANDBAN=A<WILTUK=BULMER<TUKEY=MORIGIT

I<A.ADJ 

2 WALD<BROSS<H<WIL<ANDBAN=A< BULMER<TUKEY=MORIGITI< 

WILTUK<A.ADJ 

4 WALD<BROSS<H<WIL<ANDBAN=A< BULMER<TUKEY=MORIGITI< 

WILTUK<A.ADJ 

8 WALD<BROSS<H<WIL<ANDBAN=A< BULMER<TUKEY=MORIGITI< 

WILTUK<A.ADJ 

 

In addition to Bootstrap Methods comparing ,in group (1) design (1) in small values of ρ, ρ ≤ 

0.5  there are very small different between methods , but for large values of ρ, ρ > 0.5 the 

(BB) method average length has minimum value and the (BT)method average length has 

maximum value. In design (2), the (RM) method average length has a maximum value for 

every ρ, fairly, the (SAM) method average length in middle of the (BT) method average 

length and (BB) method average length. The (BB) method average length has minimum value 

for small values of ρ, ρ ≤ 0.5. However, in large values of ρ, ρ > 0.5, the (BT) method 

average length has minimum value. 

Table (5) :-Results of Table (2.1)for bootstrap methods  

Ρ Comparing between methods 

0.001 BT<RM<BB<SAM 

0.01 RM<BT<BT<SAM 

0.1 RM<BB<BT<SAM 

0.5 SAM<BT<BB<RM 

1 BB<RM<SAM<BT 

2 RM<BB<SAM<BT 

4 BB<RM<SAM<BT 

8 BB<RM<SAM<BT 

 

Table (6) :-Results of Table (2.2)for bootstrap methods  

http://www.eajournals.org/


European Journal of Statistics and Probability 

Vol.4, No.2, pp.1-48, June 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

36 

ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

Ρ Comparing between methods 

0.001 BB<BT<SAM<RM 

0.01 BB=BT<SAM<RM 

0.1 BB<BT<SAM<RM 

0.5 BB<BT=SAM<RM 

ρ≥1 BT<SAM<BB<RM 

  

Let us compare the average length values as we go from group (1) design (1) to design (2). 

All methods average length decreases for every ρ. However, it decreases by different rates. 

 Let us consider group (2), Tables (2-3) and (2-4) shows the exact and approximate method 

results. The William and Tukey (WILLTUK) Method has minimum average length for small 

values of ρ, ρ ≤0.5, however, for large values of ρ, ρ>0.5, the average length continues in 

increasing to be the maximum value. The (A.ADJ) Method maximum average length for 

small values of ρ, ρ ≤ 0.01, and for large value of ρ , 0.01 < ρ ≤ 0.5 , the BROSS method 

average length has the maximum values , but for larger values of ρ, ρ > 0.5 ,(A.ADJ) average 

length is lower than the (WILLTUK) method average length , the (WILLTUK) Method 

average length is the maximum. Wald method average length is larger than (WILLTUK) 

average length, but it is lower than the other methods for small values of ρ, ρ ≤1, however, 

for large values of ρ, ρ >1 Wald's average length is minimum value. 

The (ANDBAN) Method average length equal the (A) Method average length for every ρ and 

the (Tukey) Method average length equal the (Morigiti) Method average length for large 

values of ρ, ρ > 0.01.  

The other methods are increasing for every ρ,  

Table (7) :-Results of Table (2.3)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK <WALD<BROSS <WIL <TUKEY<ANDBAN=A<BULMER=MORGITI 

<H<A.ADJ 

0.01 WILLTUK <WALD=BROSS <WIL <TUKEY<ANDBAN=A<BULMER=MORGITI 

<H<A.ADJ 

0.1 WILLTUK<WALD<WIL <TUKEY<ANDBAN=A <BULMER=MORIGITI <H 

<A.ADJ< BROSS 

0.5 WILLTUK<WALD<WIL <TUKEY<BULMER=MORIGITI <ANDBAN=A 

<H<A.ADJ <BROSS 

1 BROSS<WALD <WIL <TUKEY<WILLTUK <MORIGITI =BULMER 

<ANDBAN=A<H <A.ADJ 

2 WALD<WIL <BULMER=MORIGITI <TUKEY<BROSS <ANDBAN=A<H 

<A.ADJ<WILLTUK 

4 WALD<WIL<BROSS <MORIGITI<BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 

8 WALD<WIL<BROSS <MORIGITI<BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 
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Table (8) :-Results of Table (2.4)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK<BROSS<WALD< 

TUKEY<ANDBAN=A<BULMER=MORGITI<A.ADJ<H 

0.01 WILLTUK<WALD<BROSS< WIL<TUKEY<BULMER=MORGITI<ANDBAN=A 

<A.ADJ<H 

0.1 WILLTUK<WALD<WIL<TUKEY<ANDBAN=A<BULMER=MORIGIT<A.AD<H

<BROSS 

0.5 WILLTUK 

<WALD<WIL<BROSS<BULMER=MORIGITI<TUKEY<ANDBAN=A<H<A.ADJ  

1 WALD<BROSS<WIL<MORIGITI=BULMER<TUKEY=WILLTUK<ANDBAN=A

<H <A.ADJ 

2 WALD<WIL<BULMER=MORIGITI<TUKEY<BROSS<ANDBAN=A<H<A.ADJ<

WILLTUK 

4 WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H<A.ADJ< 

WILLTUK 

8 WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H<A.ADJ< 

WILLTUK 

 

About BOOTSTRAP METHODS comparing ,in group(2) design (3) and (4) the (BB) method 

average length has minimum value for every ρ, and the (BT) method average length has 

maximum value for large values of ρ,  ρ > 0.1 , and the (SAM) method average length has 

maximum value for small values of ρ ,ρ ≤ 0.1(design3) . But in design (4) the (RM) method 

average length has maximum for ρ ≤ 0.01 , and the (SAM) method average length has 

maximum value for ρ = 0.1 , fairly, the(SAM)method average length in middle of  the 

(BT)method average length and (BB) method average length . 

 

Table (9) :-Results of Table (2.3)for bootstrap methods  

Ρ Comparing between methods 

0.001 BB<BT<RM=SAM 

0.01 BB<BT<RM<SAM 

0.1 BB<RM<BT<SAM 

ρ≥0.5 BB<RM<SAM<BT 

 

Table (10) :-Results of Table (2.4)for bootstrap methods  

Ρ Comparing between methods 

0.001 BB<BT<SAM<RM 

0.01 BB<BT<SAM<RM 

0.1 BB<BT<RM<SAM 

0.5 BB<RM<SAM<BT 

Ρ ≥ 1 BB<SAM<RM<BT 
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Let us compare the average length values as we go from group (2) design (3) to design (4). 

All methods average length decreases for every ρ. However, it decreases by different rates. 

Let us consider group (3), Tables (2-5) shows the exact and approximate method results. The 

William and Tukey (WILLTUK) Method has minimum average length for small values of ρ, 

ρ ≤ 0.5, however, for large values of ρ, ρ > 0.5, the average length continues in increasing to 

be the maximum value for larger values of ρ, ρ ≥ 4. The (A.ADJ) Method maximum average 

length for small values of ρ, ρ ≤ 0.01, and in 0.1< ρ ≤ 2, the (WILLTUK) Method average 

length is the maximum for ρ > 2. Wald method average length is larger than (WILLTUK) 

average length, but it is lower than the other methods for small values of ρ, ρ ≤ 0.5, however, 

for large values of ρ, ρ >1 Wald's average length is minimum value. 

The (ANDBAN) Method average length equal the (A) Method average length for every ρ and 

the (Tukey) Method average length equal the (Morigiti) Method average length for large 

values of ρ, ρ > 0.01. The other methods are increasing for every ρ. 

Table (11) :-Results of Table (2.5)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK <WALD<BROSS <WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.01 WILLTUK <WALD=BROSS <WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.1 WILLTUK<WALD<WIL <TUKEY<BULMER=MORIGITI <ANDBAN=A <H 

<A.ADJ< BROSS 

0.5 WILLTUK<WALD<WIL <TUKEY<BULMER=MORIGITI<BROSS 

<ANDBAN=A <H<A.ADJ  

1 WALD <WIL < BROSS<MORIGITI =BULMER <TUKEY=WILLTUK 

<ANDBAN=A<H <A.ADJ 

2 WALD<WIL<BROSS <BULMER=MORIGITI <TUKEY 

<ANDBAN=A<H<WILLTUK <A.ADJ 

4 WALD<WIL<BROSS <MORIGITI=BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 

8 WALD<WIL<BROSS <MORIGITI=BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 

     About Bootstrap Methods comparing ,in group (3) design(5) the (BB) method average 

length has minimum value for every ρ, and the (BT) method average length has maximum 

value for large values of ρ, ρ > 0.1 , and the (RM) method average length has maximum value 

for small values of ρ ,ρ ≤ 0.1. Fairly, the (SAM) method average length in middle of the (BT) 

method average length and (BB) method average length. 

Table (12) :-Results of Table (2.5)for bootstrap methods  

 Comparing between methods 

ρ≤0.1 BB<BT<SAM<RM 

ρ>0.1 BB<RM<SAM<BT 

Let us compare the average length values as we go from group (3) design (5). All methods 

average length decreases for every ρ. However, it decreases by different rates 

http://www.eajournals.org/


European Journal of Statistics and Probability 

Vol.4, No.2, pp.1-48, June 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

39 

ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

Another type for comparing every methods damage all methods in one compensation for each 

design (exact, approximate and bootstrap)   from this tables 

Table (13) :-Results of Table (2.1)for all methods  

 Comparing between methods 

0.001 WILLTUK<BROSS<WALD<BT<RM<BB<SAM<TUKEY<MORGITI<BULME

R<WIL<ANDBAN=A<H<A.ADJ 

0.01 WILLTUK<RM<BT<BT<SAM<WALD<BROSS<TUKEY<MORIGITI<BULM

ER<WIL<ANDBAN=A<H<A.ADJ 

0.1 WILLTUK<RM<BB<BT<SAM<WALD<TUKEY=MORIGITI<BULMER<WIL

<ANDBAN=A<H<BROSS<A.ADJ 

0.5 SAM<BT<BB<RM<WILLTUK<WALD<TUKEY=MORIGITI<BULMER<WIL

<ANDBAN=A<H<BROSS<A.ADJ 

1 BB<RM<SAM<BT<BROSS=TUKEY=MORIGITI<WILLTUK=BULMER<WIL

<ANDBAN=A<H<WALD<A.ADJ 

2 RM<BB<SAM<BT<WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A

<H<BROSS<WILLTUK<A.ADJ 

4 BB<RM<SAM<BT<WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A

<H<BROSS<WILLTUK<A.ADJ 

8 BB<RM<SAM<BT<WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A

<H<BROSS<A.ADJ<WILLTUK 

 

Table (14) :-Results of Table (2.2)for all methods  

 Comparing between methods 

0.001 WILLTUK<WALD<BROSS<BB<BT<SAM<RM<TUKEY<ANDBAN=A=WIL=

MORIGITI=BULMER<H<A.ADJ 

0.01 WILLTUK<WALD<BB=BT<SAM<RM<TUKEY=ANDBAN=A=WIL=MORIGI

TI=BULMER<BROSS<H<A.ADJ 

0.1 WILLTUK<WALD<BB<BT<SAM<RM<TUKEY=ANDBAN=A=WIL=MORIGI

TI=BULMER<BROSS<H<A.ADJ 

0.5 WILLTUK<WALD<BB<BT=SAM<RM<BROSS<WIL<ANDBAN=A<BULME

R<TUKEY=MORIGITI<H<A.ADJ 

1 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<WILTUK=BULM

ER<TUKEY=MORIGITI<A.ADJ 

2 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<BULMER<TUKE

Y=MORIGITI<WILTUK<A.ADJ 

4 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<BULMER<TUKE

Y=MORIGITI<WILTUK<A.ADJ 

8 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<BULMER<TUKE

Y=MORIGITI<WILTUK<A.ADJ 
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Table (15) :-Results of Table (2.3)for all methods  

 Comparing between methods 

0.001 WILLTUK<WALD<BROSS<BB<BT<RM=SAM<WIL<TUKEY<ANDBAN=A<

BULMER=MORGITI<H<A.ADJ 

0.01 WILLTUK<WALD=BROSS<BB<BT<RM<SAM<WIL<TUKEY<ANDBAN=A<

BULMER=MORGITI<H<A.ADJ 

0.1 WILLTUK<WALD<BB<RM<BT<SAM<WIL<TUKEY<ANDBAN=A<BULME

R=MORIGITI<H<A.ADJ< BROSS 

0.5 BB<RM<SAM<BT<WILLTUK<WALD<WIL<TUKEY<BULMER=MORIGITI

<ANDBAN=A<H<A.ADJ <BROSS 

1 BB<RM<SAM<BT<BROSS<WALD<WIL<TUKEY<WILLTUK<MORIGITI=B

ULMER<ANDBAN=A<H <A.ADJ 

2 BB<RM<SAM<BT<WALD<WIL<BULMER=MORIGITI<TUKEY<BROSS<A

NDBAN=A<H<A.ADJ<WILLTUK 

4 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI<BULMER<TUKEY<A

NDBAN=A<H<A.ADJ<WILLTUK 

8 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI<BULMER<TUKEY<A

NDBAN=A<H<A.ADJ< WILLTUK 

Table (16) :-Results of Table (2.4)for all methods  

Ρ Comparing between methods 

0.001 WILLTUK<BROSS<WALD<BB<BT<SAM<RM<WIL<TUKEY<ANDBAN=A<

BULMER=MORGITI<A.ADJ<H 

0.01 WILLTUK<WALD<BROSS<BB<BT<SAM<RM<WIL<TUKEY<BULMER=M

ORGITI<ANDBAN=A <A.ADJ<H 

0.1 WILLTUK<WALD<BB<BT<RM<SAM<WIL<TUKEY<ANDBAN=A<BULME

R=MORIGIT<A.AD<H<BROSS 

0.5 WILLTUK<BB<RM<SAM<BT<WALD<WIL<BROSS<BULMER=MORIGITI<

TUKEY<ANDBAN=A<H<A.ADJ  

1 BB<RM<SAM<BT<WALD<BROSS<WIL<MORIGITI=BULMER<TUKEY=WI

LLTUK<ANDBAN=A<H <A.ADJ 

2 BB<RM<SAM<BT<WALD<WIL<BULMER=MORIGITI<TUKEY<BROSS<A

NDBAN=A<H<A.ADJ<WILLTUK 

4 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<A

NDBAN=A<H<A.ADJ< WILLTUK 

8 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<A

NDBAN=A<H<A.ADJ< WILLTUK 

Table (17) :-Results of Table (2.5)for all methods  

Ρ Comparing between methods 

0.001 WILLTUK <WALD<BROSS < BB<BT<SAM<RM<WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.01 WILLTUK<WALD=BROSS<BB<BT<SAM<RM<WIL<TUKEY<ANDBAN=A<B

ULMER=MORGITI<H<A.ADJ 

0.1 WILLTUK<WALD< BB<BT<SAM<RM<WIL <TUKEY<BULMER=MORIGITI 

<ANDBAN=A <H <A.ADJ< BROSS 
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0.5 WILLTUK<WALD<BB<RM<SAM<BT<WIL<TUKEY<BULMER=MORIGITI<B

ROSS<ANDBAN=A <H<A.ADJ  

1 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY=WIL

LTUK<ANDBAN=A<H <A.ADJ 

2 BB<RM<SAM<BT<WALD<WIL<BROSS<BULMER=MORIGITI<TUKEY<AN

DBAN=A<H<WILLTUK <A.ADJ 

4 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<AN

DBAN=A<H<A.ADJ< 

WILLTUK 

8 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<AN

DBAN=A<H<A.ADJ<WILLTUK 

 

Looking at different tables, we can state the following remarks:- 

1- In coverage of large group (design 1 and 2) the Wald, the CON.LL, the CON. UL 

coverage are constant for every ρ .Bross coverage increases for every ρ. But about 

Tukey, Anderson and Bancroft, William and Arithmetic coverage values of ρ decreases 

for small values of ρ, ρ≤ 0.5 .However, for larger values of ρ, ρ>0.5, the coverage is a 

constant value. William and Tukey coverage increases for the small values of ρ, ρ≤1. 

Finally, Harmonic (H) coverage increases for every ρ in general. The (A.ADJ) Method is 

more conservative than the conservative method. (BT) coverage increases for small 

values of ρ .However larger value is a constant, (BB) coverage increase for small values 

of ρ. However, larger values of ρ, the coverage decreases. (RM) coverage decreases for 

every ρ, but in design (2), the coverage decreases for small values of ρ. However, larger 

values of ρ, the coverage is constant. Finally, (SAM) coverage is the best method 

increases in design (1) but in design (2) coverage decreases for small values of ρ but in 

twice design coverage is a constant. 

2- In medium groups (design 3and 4) the Wald, the CON.LL, the CON.UL coverage are 

constant for every ρ .Bross and (H) coverage increases for every ρ.  But about 

(ANDBAN) ,William,(A) and (A.ADJ) coverage values of ρ decreases for small values 

of ρ, ρ≤ 0.5. However, for larger values of ρ, ρ> 0.5 ,the coverage is a constant value 

.William and Tukey coverage increases for the small values of ρ, ρ≤ 1 .However ,larger 

values of ρ ,     ρ >1, the coverage decreases . Morigiti and Bulmer coverage decrease for 

all values of ρ. Finally, Tukey coverage decreases for every ρ in general. The (A.ADJ) 

Method is more conservative than the conservative method. The (SAM) and (BB) 

methods coverage increase for every ρ. The (BT) and (RM) methods coverage increase 

for small values of ρ, however, this coverage decrease for larger values of ρ. Finally, 

(SAM) coverage and the best method in bootstrap methods. 

3- In small groups (design 5) the Wald, the CON.LL, the CON.UL coverage are constant 

for every ρ .Bross coverage increases for every ρ. However, about (ANDBAN), William, 

(A) and (WILLTUK) coverage values of ρ increases for small values of ρ, however, for 

larger values of ρ. Morigiti and Bulmer coverage decrease for all values of ρ.  (H) 

Coverage increases for small values of ρ, however, it is constant for larger values of ρ.  

Finally, Tukey and (A.ADJ) coverage decreases for every ρ in general. The (A.ADJ) 

Method is more conservative than the conservative method. The (SAM), (BT), (RM) and 
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(BB) methods coverage increases for small values of ρ, however, it decreases for larger 

values of ρ. Finally, (SAM) coverage and the best method in bootstrap methods. 

4- In the average length for large groups (designs1) WillTuk average length has the smaller 

values for ρ≤ 0.1, then the Bootstrap methods also has small values ,but for ρ> 0.1 the 

smaller values of average length for the Bootstrap methods and the A.ADJ method is 

larger value for all values of ρ except ρ=8 WillTuk has the larger value. But in (design 2) 

A.ADJ has a larger value for every ρ, however , for ρ≤ 0.5 WillTuk method has the 

smallest value , and for ρ> 0.5 Wald has the smallest value then for every ρ  the 

Bootstrap methods has small values also but this values are larger than  WillTuk and 

Wald. 

5- For medium  and small samples WillTuk method average length has smallest values for 

ρ≤ 0.5 then Bross and Wald then the bootstrap methods but the large value for A.ADJ 

method , however, for ρ> 0.5 the bootstrap methods  is the smaller values but this values 

are larger than WillTuk method. 

Finally, after damaged the results of the coverage and average length the best methods have 

highest coverage with smallest average length. In design (1) the best method is (SAM) 

method, because it has appropriate coverage with a small value of average length for all 

values of ρ this method from bootstrap methods. In design (2) and design (5) the best method 

is (Wald) method, because it has high coverage with a small value average length with all 

values of ρ this method from exact methods. In design (3) and design (4) the best method is 

(Wald) for small values of ρ, ρ≤0.1and it is an exact method. However, for large values of ρ, 

ρ>0.1 the best method is (SAM) method and it is a bootstrap method.  

 

AN AGRICULTURAL APPLICATION 

We apply all methods of constructing confidence intervals for   , to two data sets obtained 

from the central laboratory for design and statistical analysis research, agricultural research 

center, ministry of agriculture see El-Shahat (1983) and El-Ganzouri (1986). The data set 

resulted from an experiment in which a sample of 6 varieties of sugar- cane was compared 

using 28plots (area is 42 square meters). While the second set resulted from another 

experiment in which a sample of 64 varieties of wheat were compared using 247 plots (area 

of plot is 2 square meters). 

The Sugar-Cane Experiment:- 

The data for the sugar-cane experiment is given in table (18). For this data.  

Table (18): Data for The Sugar-Cane Experiment. 

Mean yield Yield of plot in kilogram( ) 
 

Varieties(i) 

722 710,665,791 3 1 

622.5 660,626,679,525 4 2 

694.6 773,721,561,592,826 5 3 

608.2 620,609,609,650,553 5 4 
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657.8 633,696,626,613,721 5 5 

507.33 574,646,480,514,427,403 6 6 

The group’s sizes for the size varieties are as follows: 

3,  .  The distinct eigen values were 

calculated and the results were given in El-Ganzouri (1986): .1946, , 

, and . 

The Eigen values multiplicities are as follows:  and  

The arithmetic mean of  and the harmonic mean of . 

Using equation (2.8), (2.9) and (2.7), respectively, the sum of squares within groups (SSW) = 

113013.13, 

The sum of squares between groups (SSB) = 1561174.95 and the sample variance of 

treatment means (  = 6242.856. the calculated =MSB/MSW=6.0894, so the null 

hypothesis that there are no differences among the varieties of sugar –cane, can thus be 

rejected at the 0.05 level of significance. 

The calculated value of the ratio of the variance components 

=  =1.0976. 

 The results of comparison between the methods of constructing confidence intervals appear 

in TABLE (19). 

Table (19): Lower and Upper Limits for  Sugar cane Design 

Length Upper limit Lower limit Methods 

8.748 

7.343 

7.483 

7.869 

8.492 

7.449 

7.442 

8.751 

9.138 

 

 

3.404 

3.777 

3.496 

1.883 

9.0033 
7.873 
7.724 

8.062 

8.9917 

7.715 

7.715 

9.0040 

9.3931 

----- 
28.3419 

3.404 

4.089 

3.496 

1.883 

0.2552 
0.531 
0.24 

0.193 
0.2590 

0.266 
0.266 
0.2527 

0.2548 

0.3166 

---- 
0.00 

0.313 
0.00 
0.00 

Wald 

Bross 
Tukey 
And Ban 

A 
Moriguti 

Bulmer 
H 
A.ADJ 
CON.LL 

CON.UL 
SAM 

Percentile 

Bt 

BB 
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The results of this table shows that the results of limits, the A.ADJ has the biggest upper limit 

and, (BB) method has the smallest upper limit. While the (A) method has the highest lower 

limit, where the bootstrap methods (BB), (BT), and (SAM) have the smallest lower limits. 

But, for average length, the best method that has the smallest average length, and the best 

method is (BB) . 

While the bootstrap methods where appear minus lower limits so we exchange this values 

with zero this methods have very closely limits the bigger upper limits in it  the percentile 

methods it has also the bigger lower limit and it is only positive limit . 

The Wheat Experiment 

The data for the wheat experiment was given in table (20) the group sizes for the sixty-four 

varieties are: 

 Values are: λ1=2 , λ2=2.0305, λ3=3, λ4=1 and λ5 =56. 

The arithmetic mean of λi (λA)=3.8586 and the harmonic mean of 3.7833. 

Using equation (2.3),(2.4)and(2.7) ,respectively, the sum of squares within groups(SSW)= 

4.27,the sum of squares between groups (SSB)= 6.94 and the sample variance of treatment 

means ( =0.029. 

The calculated =MSB/MSW=4.7253, so the null hypothesis that there are no differences 

among the varieties of sugar –cane ,can thus be rejected at the 0.05 level of significance .The 

calculated value of the ratio of the variance components 

= =0.9803. 

The results of comparison between the methods of constructing confidence intervals appear 

in TABLE (21). It shows that bootstrap methods is larger than the exact and approximate 

methods, it indicates that Bross method is the shortest then Morigiti=Bulmer then Tukey 

method but the largest method is (SAM) then Bootstrap-t then Wald then A.ADJ. While, in 

case of coverage the largest upper limit for Bootstrap-t method and the smallest upper limit 

for Morigiti and Bulmer. But the largest lower limit for Bross method and smallest lower 

limit for And Ban .The results of limits, the (Bt ) has the biggest upper limit  and Morigiti and 

Bulmer have the smallest upper limit .While ,Bross has the highest lower limit ,Where the 

And Ban has the smallest lower limit. But, for average length, the best method that has the 

smallest average length ,and the best method is Bross method.     

TABLE (20):Data for The Wheat Experiment.  

Mean yield Yield of plot in kilogram ni Varieties 

34.1 1.28, 1.574 2 3 

342.1 1.44,1.15 2 2 

3411 1.37,1.45,123 1 1 

342.1 1.35,1.16,1.1 1 . 
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342. 1.17,1.35,1.2 1 1 

341.1 2.1,1.25,1.44, 1 6 

.4.11 0.91,1.1,0.92 1 1 

34211 1.27,1.2,1.5,1.08 . 8 

341.1 1.09,1.56,1.47,1.45 . 6 

341 1.02,1.38,1.33,1.47 . 3. 

34231 1.16,1.3,1.25,1.14 . 33 

34111 1.38,1.34,1.4,1.29 . 32 

34361 1.29,1.05,1.29,1.02 . 31 

34..8 1.43,1.45,1.55,1.36 . 3. 

34.18 1.24,0.9,1.1,1.07 . 31 

34221 1.33,1,1.27,1.3 . 36 

34131 1.14,0.96,1.1,1.05 . 31 

34111 1.32,1.22,1.49,1.3 . 38 

34111 1.3,1.12,1.51,1.57 . 3. 

342.8 1.36,1.42,1.28,1.13 . 2. 

34131 1.45,1.34,1.64,1.62 . 23 

342.1 1.36,1.22,1.35,1.25 . 22 

.4..1 1.06,0.84,1.04,1.04 . 21 

343.1 0.83,1.21,1.27,1.27 . 2. 

343.8 1.28,1.16,1.05,1.1 . 21 

34321 1.15,0.84,1.31,1.2 . 26 

34.21 1.05,0.93,1.05,1.06 . 21 

34..1 0.88,1.13,1.05,1.32 . 28 

34231 1.29,1.19,1.22,1.16 . 2. 

Mean yield Yield of plot in kilogram ni Varieties 

34161 1.32,1.47,1.55,1.12 . 1. 

3428 1.23,1.04,1.15,1.41 . 13 

3412 1.36,1.24,1.43,1.25 . 12 

..143  0.9,1.12,0.9,1.26 . 11 

342. 1.08,1.24,1.47,1.37 . 1. 

34321 1.26,1.16,1.15,0.92 . 11 

34261 1.23,1.21,1.45,1.16 . 16 

3431 1.23,1,1.16,1.29 . 11 

342.1 1.32,1.23,1.22,1.21 . 18 

34311 1.21,1.02,1.14,1.16 . 1. 

34218 1.15,1.17,1.3,1.33 . .. 

34231 1.3,1.15,1.24,1.17 . .3 

3422 1.17,0.8,1.33,1.48 . .2 

34118 1.19,1.52,1.25,1.49 . .1 

343.8 1.24,1.36,1.06,1.13 . .. 

342.1 1.17,1.24,1.32,1.08 . .1 

34211 1.4,1.34,1.2,1.16 . .6 

34318 1.18,1.21,1.24,1.08 . .1 

34121 1.37,1.3,1.32,1.3 . .8 

.481 0.85,0.84,1.07,0.64 . .. 
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34.11 0.95,1.12,0.99,1.16 . 1. 

34..8 1.06,1,1.08,1.25 . 13 

34318 1.27,1.01,1.12,1.15 . 12 

341.8 1.39,1.2,1.52,1.12 . 11 

34138 1.13,1.28,163,1.23 . 1. 

.4.6 0.99,0.95,1.02,0.88 . 11 

34.81 0.89,1.14,1.11,1.19 . 16 

.4.18 1.02,1.02,1.1,0.62 . 11 

.4.18 0.98,0.78,1.1,0.89 . 18 

34.18 0.82,0.9,1.16,1.27 . 1. 

.4818 0.94,0.75,0.99,0.75 . 6. 

.4..1 1.1,0.8,1.08,1 . 63 

.4.21 0.94,0.81,0.92,1.03 . 62 

.486 0.91,0.96,0.92,0.66 . 61 

.411 0.83,0.67,0.72,0.7 . 6. 

 

Table (21): Lower and Upper Limits for  Wheat Designs. 

Length Upper limit Lower limit Methods 
1.076 

814.  

.4.16 

34..1 

34.13 

.4.3. 

.4.3. 

1.077 

1.077 

 

 

3423 

3431 

1.6659 
1.773 
341.1 

34638 

346631 

34111 

34111 

1.6670 

1.6657 

----- 
1.7899 

1.925 

34.2. 

0.5902 
0.904 

.46.3 

.4113 

.41..1 

6214.  

.4621 

0.5899 

0.5891 

0.5886 

---- 
0.804 
0.799 

Wald 

Bross 
Tukey 
And Ban 

A 
Moriguti 

Bulmer 
H 
A.ADJ 
CON.LL 

CON.UL 
SAM 

Bt 
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