
 
European Journal of Statistics and Probability  

Vol.4, No.5, pp.28-68, October 2016         

)www.eajournals.orgPublished by European Centre for Research Training and Development UK (          

- 28 - 

 

BOOTSTRAP CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS IN THE 

UNBALANCED RANDOM ONE –WAY MODEL 

 

M.A.T.  ElshahaT                                                      E. H.   Abd El-Sattar 

 Faculty of Business, University of Jeddah                    Faculty of Commerce, ZagazigUniversity 

             Kingdom of Saudi Arabia.                                                      Egypt. 

                                              

 

ABSTRACT: The problem of constructing confidence intervals for the ratio of variance components 

in unbalanced random one-way model is to investigate. In this respect, various different exact 

methods, which are introduced, by Wald (1947), Bross (1950), Tukey (1951), Anderson, and 

Bancroft (1952) are used. However, these methods are rather difficult to compute since it involves 

the solution of non-linear equations. So several approximate methods, which are easier to compute, 

are discussed. These methods were introduced by Satterthwait (1946), Morigiti (1954), Bulmer 

(1957), Thomas and Hultiquist (1978), El-Bassiouni (1978), and El-Ganzouri (1986). In this search 

a Monte Carlo simulation study is conducted to examine the performance of the above mentioned 

methods. Recently, new alternative methods namely Bootstrap are also, given and included in 

comparison. Simulation depends on the sizes of the samples and that the basis of comparison are 

constructed based on the coverage values and average length. After damaged the results of the 

coverage values and average length are discussed. In design (1) the best method is (SAM) method, 

because it has appropriate coverage value with a small value of average length for all values of ρ, 

this method is from bootstrap methods. In design (2) and design (5) the best method is (Wald) 

method, because it has high coverage with a small value average length with all values of ρ, this 

method from exact methods. In design (3) and design (4) the best method is (Wald) for small values 

of ρ, ρ≤0.1and it is an exact method. However, for large values of ρ, ρ>0.1 the best method is (SAM) 

method and it is a bootstrap method. In applied case sugar -cane experiment the results of limits, the 

A.ADJ has the biggest upper limit and, (BB) method has the smallest upper limit. While the (A) 

method has the highest lower limit, where the bootstrap methods (BB), (Bt), and (SAM) have the 

smallest lower limits. However, for average length, the best method that has the smallest average 

length, and the best method is (BB) MAETHOD.In addition to. The another applied case wheat 

experiment the results of limits, the (Bt ) has the biggest upper limit  and Morigiti and Bulmer have 

the smallest upper limit .While ,Bross has the highest lower limit ,Where the And Ban has the 

smallest lower limit. However, for average length, the best method that has the smallest average 

length, and the best method is Bross method.   

 

KEYWORDS: Unbalanced one-way random effect model; interval estimation; variance 

components; bootstrap confidence interval; quadratic estimators; Monte Carlo simulation. 

 

 

INRODUCTION 

 

The Thesis Problem  

This study, discuss the problem of constructing confidence intervals for the ratio of variance 

components in the unbalanced random one-way model is investigated, Wald (1947) out lined an 

exact method for constructing such interval. It is rather difficult to computer since it involves the 

solution of two non-linear equations. 
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In recent years, several attempts had been made to use analysis of variance (ANOVA) and the 

resulting variance components estimates to estimate the reliability of a measurement procedure. 

Thus, interval estimation of creation function of variance components is of interest to researches in 

all fields of applications in which the variance components model is used. Several authors have 

proposed confidence intervals for linear functions and ratios of variance components. 

 

For the most part, these intervals are approximate with unknown exact probabilities associated with 

their coverage. In this search, a technique is given for the construction of simultaneous confidence 

intervals for the values of all continuous functions of the variance components in a balanced, general 

random linear model. These confidence intervals are conservative that is, the actual confidence level 

cannot be less than any preset value. The proposed technique is easy to apply, as it only requires the 

optimization of a given continuous function of the variance components over a bounded region. To 

evaluate the variance among the laboratories and the variance of testing error, a confidence interval 

on this sum of variances will provide more information about the process than will a simple point 

estimate. 

The problem of constructing bootstrap confidence intervals for percentiles of the model is considered 

seven bootstrap approximate methods. They are used to construct these confidence intervals. The 

bootstrap algorithm Efron (1979, 1987, and 1992) is used to construct confidence limits for all 

methods. The comparison between confidence intervals lengths will be done using small, moderate 

and large sample sizes. 

 

REVIEW OF PREVIOUS STUDIES 

 

Several methods have been proposed for the construction of confidence intervals for variance 

components in some particular linear models. These include procedures by Satterthwait (1941), 

Bross (1950), Tukey (1951), Morigiti (1954), Bulmer (1957), and Williams (1962). These 

procedures are approximate and do not state the exact probabilities associated with their coverage. 

Boardman (1974) to investigate the actual probability of coverage for several of these procedures 

conducted a comparative Monte Carlo study. Satterthwaite (1946) and Wald (1947) continue to be 

popular among practitioners, and Welch (1956) discussed problems involving linear combinations of 

variances and offered approximate method for these problems. In a more recent paper, Burdick and 

Sielken (1978) described a procedure to construct unbiased estimator for a linear combination of 

variance components in an unbalanced nested classification. They showed that this estimator has an 

exact chi-square distribution and can be used to form an exact confidence interval on the linear 

combination of variance components. 

 

An improvement of their procedure with respect to degrees of freedom (d.f) and the particular linear 

combinations considered was given by Seely (1972). Graybill and Wang (1980) proposed a method 

for obtaining confidence intervals on non-negative linear combinations, of variance in a balanced 

random model. In this method, large sample confidence limits, developed on the basis of the 

asymptotic normality of the uniformly minimum variance unbiased estimator of the ratio are 

modified so they might be more exact for small or moderate sample sizes . 

 

Interest in interval estimation of function of variance components, other than linear, has developed 

during the last two decades. Breomling (1969) using a result by Kimball (1951), obtained 

conservative confidence interval for the variance ratios of balanced random models. The exact 
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confidence coefficients associated with Breomling`s confidence regions were obtained by Sahi and 

Anderson (1973) in terms of the upper tail of the probability integrals of the inverted Dirichlet 

distribution. Graybill and Wang (1979) presented approximate lower and upper confidence intervals 

for three special functions of the variance components in a balanced random two-fold nested 

classification model. 

 

Recently, approximate methods have been proposed by Boardman (1974) compared using simulation 

technique between several exact method for the variance components in the random one-way model. 

Several approximate methods are also available and easier to compute.Thomas and Hultiquist (1978) 

introduced the harmonic mean method while El-Bassiouni (1978) introduced the arithmetic mean 

method. The terms harmonic and arithmetic arise from the fact that the harmonic and arithmetic 

mean of eigenvalues of a certain covariance matrix were used to replace the individual eigenvalues. 

Thus simplifies the computation. El-Bassiouni (1978) outlined also a conservative method along the 

lines of Breomling (1969), which guarantees at least the nominal coverage. 

 

Graybill and Wang (1980) have proposed other methods, and Khuri (1981) provides a brief review of 

the research in this area. Previous methods have been developed for designs in which sum of squares 

are independent and have chi-square distribution. In unbalanced designs, however the sum of squares 

in general does not pass these properties, and use of these methods may be in appropriate. 

El-Ganzouri (1986) conducted a Monte Carlo simulation study, which resulted from modification of 

arithmetic method as compared with the exact and new approximate method also given and included 

in the comparison. About that there are a lot of new studies such as, Ming Wang (1990) talked about 

the lower abound of confidence co efficient for a confidence interval on variance components, 

Weerahandi (1993) talked about generalizing confidence internalizing confidence intervals, Aitkin 

(1999) talked about a general Maximum likelihood analysis of variance components in generalized 

linear models. 

More recently, Zhang and Woodroof (2002) talked about credible and confidence sets for the ratio of 

variance components in the balanced one-way model. Bottai and Orsini (2004) discussed confidence 

intervals for the variance components of random effects linear models. The latest one was Sonogo 

(2008) that discussed tolerance intervals in random effects model. 

 

Objective of the Study Research 

In this thesis, a Monte Carlo simulation study is conducted to examine and compare the performance 

of the above-mentioned exact and approximate methods and bootstrap confidence interval methods 

are given. In chapter (2) covers the basic background .The one-way random effects model for 

unbalanced data is defined; a mathematical expression for the model is presented and probability 

distributions for its components are discussed. It also discuss the exact and approximate confidence 

interval formulas for the ratio of the variance components (ρ). Chapter (3) covers Bootstrap methods 

of confidence interval for variance components, and then we will explain the comparison between 

these different methods, in chapter (4) using Mote Carlo comparison And Numerical results of the 

simulation between exact approximate methods and bootstrap methods and agriculture application 

.Finally, in chapter (5) discussion of applied cases. 

 

The Confidence Intervals 

Section (2.1) is devoted to the confidence interval for the variance component. Section(2.2) 

introduces the one-way model, discussed confidence interval formulas for the ratio of variance 
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components in exact methods. While, in section (2.3), the same confidence interval for the 

approximate methods are introduced.  

 

The One-Way Model. 
In a sample of (t) treatments, and that  have (n) experimental units, at our disposal to be used to 

compare their effects. Suppose that the (n) units are divided into (t) groups each having (ni) units, (i 

= 1,2,……,t), where, the units in group (i) receive treatment (j), let (yij) denote the response of the jth 

units in the ith group. We consider the model:- 

                                                                             , i=1,……….t  . 

, j=1,………  . 

, n=    . 

Where, 

→ is the response of the jth observe in the ith treatment, 

  → is the over-all mean, 

 → is the effect of treatment (i),  . 

→is the independently of the random error,  , 

In the matrix form, we have:- 

                                                            

Where ( ) is an (n 1) vector of ones, 

A=  =Diag( )     ,                             , i = 1,…….t . 

→is (t 1) vector of the treatment effects. 

→is (n 1) vector of the random error. 

We can note that  

             ,   and    . 

            Hence  . 

Let (H) be an [n (n-1)] matrix with ith column. 

            /                                                       

The columns of (H) form an orthonormal basis for the subspace of vectors orthogonal to [sp ( )]. 

 .                     ,  .                                        

         See LaMotte (1976). Seely (1972) showed that ( ) is maximal location invariant 

statistic. 

. 

            . 
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          Where (C) is an (n n) symmetric matrix .In every  quadratic in(y)is linear 

function of ( ,and(y)is normally distributed with mean ( ) and covariance ( ). 

Where, 

  And    W=  . 

Hence       ). 

     Let the spectral decomposition of (W) be given by W =   , and following Olsen, et.all 

(1976), let 0 =  be the (k+1) distinct eigenvalues of ( ) with 

multiplicities ,……., , respectively, and for i =1,……, k ( ) because (n > t), where ( ) 

denotes the orthogonal projection operator on subspace on the eigen-vectors corresponding to , 

Hence the density function of:- 

                  . 

                   . 

       Let,                                                              (2.1) 

       Hence  …..,  constitute a minimal sufficient statistic for the family of distributions 

induced by (Z). Moreover the sufficient statistic ( ,…., ) is complete when (k=1) in case 

(  .... = ) (balanced design) or in case (t=2) otherwise (k=1), we see that there doesn't 

exist a complete sufficient statistic in case of unbalanced (un equal sample sizes) designs, unless we 

have only two groups .from now on we assume that the ( ) are not all equal and that(t>2). 

         See LaMotte (1976) and El-Bassiouni (1978) for the following results are 

established by El-Bassiouni (1978). 

                                                                                                               (2.2) 

Where,                                                                    

And,                                                    

       The quadratic forms   are related to (ANOVA) sums of squares .In fact, Olsen, 

et, all (1976) showed that. 

                                                                                          (2.3) 

Which the sum of squares is within groups, where, 

 .         Further, since. 

. 

Where, , we have that, 

 . 

                               . 

                                                                                      (2.4) 



 
European Journal of Statistics and Probability  

Vol.4, No.5, pp.28-68, October 2016         

)www.eajournals.orgPublished by European Centre for Research Training and Development UK (          

- 33 - 

 

         Which is the sum of squares between groups, Moreover, the degrees of freedom are given by:- 

                                                                                                                   (2.5) 

And 

                                                                                                                   (2.6) 

See El-Bassiouni (1978).  From the model: 

      . 

                    (Yij-Ῡ..) = (Ῡi.-Ῡ..)  + (Yij-Ῡi.) 

     ↓            ↓                     ↓ 

                      Total      treatment            error   

 .  SSTOT      =     SSB    +          SSW. 

ANOVA 

F EMS MS SS d.f Source  

 . 
. 

=  

MSB=  

MSW=  

 SSB 
SSW 

t-1= 

n-t= 

Between( ) 

Within ( ) 

   . SSTOT n-1 Total 

From ANOVA table 

 

  .            . 

And, 

MSB=   ,       .   

 .   . 

And from the model. 

 .     . 

 . 

           . 

So  

          
, and   .  

The Exact Confidence Interval Formulas For The Ratio Of The Variance Components () 

        This section, introduce exact formulas for constructing confidence interval for the ratio (ρ), 
which is the between variance components to the within variance components. 

 . 
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         There are different methods of obtaining confidence intervals for the among groups component 

of variance in the design have been presented. This methods include procedures proposed by Wald 

(1947), Bross (1950), Tukey (1951) , Andrson and Buncroft (1952) , and  Williams (1963). 

   

       The exact confidence interval for (ρ) given in Wald (1947) to construct a confidence interval for 

(ρ) is as follows:- 

 .  With       . 

        The confidence intervals for the ratio (ρ) of the variance components can be constructing to this 

end. Let  be such that  . 

Wald (1947) considered the problem of constructing confidence intervals for (ρ). 

             .                          

           He proposed an exact interval whose upper end point is the root in (ρ) of the equation.   

         .                

         Where  be F-distribution with degrees of freedom and and level of 

significant ( ) where ( ) on the other hand, the lower end point is the root in (ρ) of the 

equation.  

          .                     

 . 

           . 

 

Bross Method 

         According to Bross(1950) derived the confidence intervals for the ratio (ρ) considered  here 

,but these limits fail to satisfy certain boundary properties .And his upper limit would be negative if:- 

         . 

          Where   . 

           And     . 

        .  ,  . 
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Let  be the upper ( ) percentage point of the (F) distribution with ( ) and (∞) degrees 

of freedom (d.f). And let  be the lower ( ) percentage point of the (F) distribution. 

The confidence interval limit for  is . 

  Upper limit= .        Lower limit =  . 

Confidence interval limits for ρ. 

 Upper limit = .  Lower limit =  .                               

 ethodM3 Tukey .2.2 
In general servey , paper on "Component in Regression" proposed an alternative to Bross's (1950) 

fiducially bounds because Bross`s bound did not satisfy the "usual" boundary conditions .Tuke y 

(1951)proposed a modified version of the upper bound but did not elaborate on it . 

-Let  be the upper(1- ) percentage point of the F-distribution with ∞ and  degrees of 

freedom .And let  be the lower  percentage point of the F-distribution, and it`s like 

 and  be the upper and lower percentage point of F-distribution with  and  

degrees of freedom.  

The confidence interval limit for   is 

 Upper limit =   .Lower limit =  . 

Confidence interval limits for ρ is . 

Upper limit  = .       Lower limit  =    .                                        

   Where,   . 

 

Anderson and Bancroft Method [ANDBAN]. 

           While discussing some of the available procedures for confidence interval for  ,Anderson 

and Bancroft (1952) proposed modified version of Bross`s procedure which satisfies the boundary 

conditions unless  .In the unlikely situation , the upper bound will be negative. 

Let  be the upper (1- ) percentage point of the F-distribution with  and  degrees of 

freedom. And let   be the lower  percentage point of the F-distribution. 

The confidence interval limit for   is. 

Upper limit  =     .             Lower limit =   . 
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Confidence interval limits for ρ is. 

Upper limit   =   .               Lower limit =  .                                               

 

Williams Method [WIL] 

 William (1962) independently obtained a (1-2 ) lower bound on the confidence interval coefficient 

by studying a graph of ( ).Versus ( ) with a plot of four lines which bound 

the two interval sets. After examining a projection of this intersection set on the ( ) axis, he 

established lower confidence co-efficient which we have found to be too conservative. 

Define and as the upper (1- ) and lower ( ) percentage points of the Chi-square 

distribution with degrees of freedom respectively. 

The confidence interval limit for  is . 

 Upper Limit = .Lower Limit= .   

Confidence interval limits for ρ is. 

 Upper Limit =  . 

Lower Limit = .                   

      Williams (1962) used a result of Tukey (1951) where Williams limits are shown  and so carefully 

drive  by Williams and they were suggested by Tukey a number of years earlier (Williams-Tukey 

method{WILLTUK}). 

          -Let  be the upper (1- ) percentage point of the F-distribution with ∞ and  degrees 

of freedom .And let  be the lower  percentage point of the F-distribution, and it`s like 

 and  be the upper and lower percentage point of F-distribution with  and  

degrees of freedom. 

Confidence interval limits for (F) is:- 

Upper limit =   .                                 Lower limit =     . 

Confidence interval limits for ρ is. 

Upper limit =   .                                 Lower limit  =   .                                                

There are many people who discussed the exact tests, Seely and El Bassiouni (1985) considered 

extensions of Wald`s variance components tests. They discussed confidence intervals for a variance 

ratio in unbalanced mixed linear models… etc. 

In the next section we will reviewed the approximate methods. 
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Methods  

In this section, we will discuss the confidence interval formulas for the ratio of variance components 

in approximate methods, and these include procedures proposed by Satterthwait (1946), El-Bassiouni 

(1978), and EL-Ganzouri (1986), then let  denote the unweight mean of group means. 

                                                                           

              

                                                                                                  (2.7)         

                                                                                               

Where, ( ) is the harmonic mean of the sample size, and (  ) is the sample variance of treatment 

means. 

 

Satterthwait  Method [A] 

          According to Satterthwaite (1946) showed that  is distributed approximately 

as F (t-1, n-t) =  . 

Where  

                .  

 Is the variance between mean of squares, see (2.3).    Is the variance within mean of squares, 

see (2.4). 

               Hence    .     And      . 

The confidence interval for  is thus given by:- 

          .                   

        And Satterthwaite showed that the distribution of  is approximately the 

distribution   , where the quantities  and  are chosen. Such that , the first two 

moments of approximate distribution are equal to those of the exact one. 

 

Moriguti Method  

Morigiti (1954)suggested the form of Tukey (1951)as an alternative to Boss’s (1950) his procedure 

with others developed up to that time. 

        The confidence interval for  where  is given by:- 

         Upper limit =     . 



 
European Journal of Statistics and Probability  

Vol.4, No.5, pp.28-68, October 2016         

)www.eajournals.orgPublished by European Centre for Research Training and Development UK (          

- 38 - 

 

         Lower limit  =       .            

Confidence interval limits for ρ is. 

        Upper limit   =                             

         Lower limit  =                

Bulmer Method  

According to Bulmer (1957)this approximate confidence interval is found for the expected value of 

the difference between two quantities which are independently distributed proportional to ( ) 

varieties. 

The confidence intervals limits for  is:- 

Upper limit =     . 

Lower limit =    . 

Confidence interval limits for ρ is. 

           Upper limit =                 

            Lower limit =    

Thomas and Hultiquist Method [H] 

           Thomas and Hultiquist(1978) showed that [ ] is distributed approximately 

as . in this case, the confidence interval for  is given by : 

   Upper limit =  .                     Lower limit =  .                                         

Where,               
 

    . 

   We call this the harmonic method (H). 

 

El-Bassiouni Method  

         See El-Bassiouni (1978), leads to the following relationship, 

,                                

and,
        

   ,                                                         

where ,    

             a1 = i

k

1i
irλ
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And, 

               a2    = i

k

1i

2
i

rλ


      

                                                      

The Satterthwait approximation thought to be fairly accurate for nearly balanced designs, nearly 

equal  .For such models we note that 

                   .                                                         

Hence     

 . 

                         (t-1).                             

It is interesting to note that   is the arithmetic mean of the , it is also the co-efficient of  in 

the expression of the expected value of  . We are going to call this method (based on Satterthwait 

approximation), the arithmetic mean method A. 

EL–Bassiouni (1978) gave a conservative confidence interval as a conservative upper limit for ρ, 

which is given by:-  

                                               

Where the (  are such that  .On the other hand a conservative lower 

limit for  is given by :- 

                                                 

A numerical study of Sahi and Anderson (1973) reveals that the conservative confidence coefficient 

are very good approximations to the exact ones. 

 

El-Ganzouri Method [A.ADJ]  

       According to El-Ganzouri (1986)  and from the approximate degrees of freedom  

and instead of .El-Ganzouri considered the following  confidence interval for  is as:- 

     Upper limit .      Lower limit  .                             

This is the arithmetic adjusted mean method (A.A DJ). 
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 Bootstrap Confidence Interval 

 

In (1979) Efron introduced the Bootstrap approach as an alternative resampling methodology to 

extend the well-known in estimating the bias and standard errors of statistics in order to construct 

reliable confidence intervals. The mechanism of this approach provides as what is namely the 

bootstrap distribution as well as the  approximate sampling distributions, which is shown to be at 

least as good as the Gaussion approximation, The Bootstrap distribution is better than the 

approximate normal distribution, see Efron (1992). In the next chapter we will compare the 

numerical results between different all d the method of estimation for the confidence interval of ρ . 

 

The Bootstrap estimate of confidence interval 
The bootstrap was introduced in (1979) by Efron as a computer_ based method for estimating the 

interval of (  ), it the best to the advantage of being completely automatic. 

The Bootstrap methods depend on the notion of a bootstrap sample. Let  be the empirical 

distribution. Putting probability  on each of the observed values  .A 

bootstrap sample is defined to be a random sample of size  drawn from  say 

 , 

     .                                                               

 Bootstrap samples are generated from the original data set. Each bootstrap sample has  

elements generated by sampling with replacement  times from the original data set .Bootstrap 

replicates  are obtained by calculating the value of the statistic  on 

each bootstrap sample .Finally, the variance components of the values 

 are our estimates of the variance components of  . 

The bootstrap algorithm begins by generating a large number of independent bootstrap samples 

 ,each of size  typical value for (B) , corresponding each bootstrap sample is 

a bootstrap replication of   .namely  ,the value of the statistic(s) evaluated for  ,If 

 is the sample median, for instance, then  is the median of the bootstrap sample . The 

bootstrap estimate of standard error  is the standard deviation of the bootstrap replication as, 

 ,                       

                                                                                              (3.1) 

                                                              (3.2) 

The probability calculation (3.1) is done with the true mean equaling , so . we will 

denote confidence intervals by , so  and  

for the interval in(3.2) .In this case, we can see that the interval  has 

probability exactly (1-2 )of containing the true value  of ρ . The probability that ρ lies below the 

lower limit is exactly ( ) ,as is the probability that  (ρ) exceeds the upper limit ,so that:- 
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    ,                                                                   

(3.3) 

         The fact that (3.3) hold for every possible value of (ρ) is what we mean when we say that 

a  confidence interval  is accurate .It is random variables being  and   , 

there for:- 

When   in general so, 

                  
                                                                       

     is called the standard confidence interval with coverage probability equal , or 

confidence level 100%, % or more simply it is called a confidence interval for 

(ρ) .  .but the more accurate form as follows:- 

 
A confidence interval  with property (3.3) is called equal-tailed, see Efron 

(1992) .This refers to the fact that the coverage error ( ) is divided up evenly between the lower 

and upper ends of the interval. Confidence intervals are usually constructed to be equal-tailed and we 

will restrict attention to equal-tailed interval, in our discussion notice also that property (3.2) implies 

property (3.1), but not vice-versa. That is, (3.2) requires that the one-sided miscoverage of the 

interval be  on each side, rather than just an overall coverage of . 

         With supposing that the true ( ) were equal to ( ), say. 

                           .                                                                

        Many types for the bootstrap confidence intervals had been introduced in different statistical 

areas and either in parametric or non-parametric settings. The simplest bootstrap confidence interval 

is that one for which the nominal quantiles of the bootstrap distribution of the statistic under study. 

This is the so-called basic bootstrap confidence interval. Another more important type ,which is 

proved to be more accurate , is the bootstrap-t (also called the percentile-t)confidence interval 

introduced first by Efron(1979).This method is based on using the quantiles of a studentized 

bootstrap statistic , generalizing thus the student-T method in constructing confidence intervals . 

 The approximate  equitailed confidence interval in this case will be that with confidence 

limits either , with and  are the -quantiles of the standard 

normal and standard (t) distribution, respectively. These approximate methods remain unacceptable 

in situations where, say, it is known that  is highly skewed or spare in order to stabilize the 

variance Efron (1992). 

Where, be the sampling distribution function of the quantity , and  be its bootstrap 

approximation with  the variance or the estimated variance of . 

         Efron (1987) introduced approximate confidence intervals based on bootstrap compilation like 

the standard intervals; these can be applied automatically to almost any situation. Though at greater 
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computational expense than (3.1). Unlike (3.1), the bootstrap intervals transform correctly .Each 

bootstrap sample gives the bootstrap replication of  . 

Methods of Bootstrap Confidence Interval for The Ratio of Variance Component () 
Many types of bootstrap confidence intervals were introduced and have been applicable a wide range 

of both theoretical and applied field. In this section, the bootstrap methods to construct approximate 

confidence intervals were described and reviewed. These methods are standard approximate method 

(SAM) proposed by Lawless (1982).Bootstrap-T (Percentile-T)method ,and Percentile Bootstrap 

method proposed by Efron (1979) ,The bias -corrected percentile method (BC Method) . Accelerate 

Bias –corrected method (BCa Method) ,proposed by Efron (1982) and The approximate confidence 

Interval (ABC Method ), proposed by Efron (1987) all these methods will be used for constructing 

approximate confidence interval for  the ratio of variance components . 

 

The Basic Bootstrap Confidence (BB) 

Efron (1992) tried to create a α/2 confidence interval for a parameter ρ based on a sample estimate   

, we determine the distance that we plausible expect  to fall from ρ at the α/2% level. As we don`t 

know the distribution of  and their percentiles, we take the corresponding percentiles 

of the bootstrap distribution. Under the assumption that the percentiles of the sampling distribution 

and the bootstrap distribution are very close, see Efron (1992). 

          % .                        

The approximate ( ) % confidence interval of ρ is 

                                                              

    , 

        is ( ) bootstrap percentile confidence interval for (ρ*) Sample. 

 

 Standard Approximate Interval (S A M) 

The exact confidence interval for percentile  ,have been obtained by Monte Carlo simulations to 

estimate the percentage points of the distribution of a pivotal quantity that can be used to find 

confidence limits for percentiles, and  .It developed procedures , for complete ,this method which 

are passed on the asymptotic normality of the unknown parameters. According this method  is 

the mth quantile of the standard normal distribution function. Using (SAM), the approximate 

( ) % confidence interval of ρ is  

                   .     

    Where,    ,   

 And  Is the standard deviation of the  sample. 

 ,Where  is the mth quantile of the standard normal distribution. 
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The Bootstrap-t Interval (BT  

 Where  represents the student`s –t distribution on (n-1) degrees of freedom. Using the 

approximation, our interval with  denoting the α/2 th percentile of the (t) distribution on (n-1) 

degrees of freedom the use of t distribution doesn`t adjust the confidence interval to account for 

sekwness in the underlying population. Idea behind the bootstrap–t method is easier to describe than 

the percentile-based bootstrap intervals in practice, however, the bootstrap –t can give somewhat 

erratic results and can be heavily influenced be a few outlying data points. Using (bootstrap-t). 

the approximate (1-α) % confidence interval of ρ is 

                                  

       , 

  , . 

 

The Percentile Bootstrap Interval (PB) 
Confidence limits can be made more accurate by working on transformed scale. The percentile 

intervals are those approximate intervals which implicitly exploit the properties of using good 

transformations of the parameter space without any need to know such transformations explicitly.  

Much better is to use the approximate (student-t)distribution for the studentized quantity  

with (  is an asymptotic estimate of  .The variance of ,the approximate  

equitailed confidence interval in this case will be that with confidence limits either 

 . With ( ) and ( ) are the -quantiles of the standard normal and 

student-t distribution, respectively. These approximate methods remain unacceptable in situations. 

Where, say, it is known that ( ) is highly skewed or the variance is unstable. In such case, the 

approximation can be refined by using transformations. Usually, the sekwness is due to the 

variability of the variance with respect to  , which needs the transformation of the parameter space 

in order to stabilize the variance. Practically, using the resampling techniques , generate a sufficient 

large number (B) of bootstrap resample of size (n)from the original sample , from each bootstrap 

resample (b) , b=1,2,…….,B. Compute the value of the estimator ,denoted by  .The percentile 

 can be estimated from the histogram of . Precisely   is the value such that:- 

. 

              The previous discussion suggests how we might use the percentiles of the bootstrap 

histogram to define confidence limits .This is exactly how the percentile interval works .A bootstrap 

data set ( ) is generated  according to , and bootstrap replications   are 

computed .Let ( ) be the cumulative distribution function of  . 

The percentile interval is also "range-preserving", i.e. the interval full within the allowable range of 

the parameter if there is a restriction on the values the parameter can take. This because ( ) obeys 
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the range of the parameter, and both end points of the interval are values of the bootstrap – statistic 

( ) .Confidence intervals that are range-preserving tend to be more accurate and reliable. 

On the other hand, a whole different class of confidence intervals introduced and refined by 

Efron(1979,1987), consists of the percentile and the adjusted percentiles methods, namely .The 

accelerated bias–corrected (BCa) interval. These interval has the advantage of using implicitly all the 

properties of good transformations without any need to know such transformations, taking thus into 

consideration the bias and sekwness in the distribution function of the underlying statistic. He (1992) 

introduced the computational burden in the (BCa) method. Indeed, like any estimated distributed 

distribution, the convergence or consistency of (  ) to ( ) can be measured by the limit of the 

error:- 

                   . 

Its magnitude, as indicate by Efron (1979) is due to the different between  or ( ) and F, together 

with nature of functional  under study, the study of such error need analytical efforts. 

To formulate our problem, Let y= (  be a random sample of size (n), drawn from a 

population with unknown distribution function (F), and let ( ) be the corresponding empirical 

distribution function. 

         Moreover, Let ( ) be the sampling distribution function of the quantity   , and ( ) be 

its bootstrap approximation with the variance of the estimated variance of  . 

          Much better is to use the approximate (student-t) distribution for the studentized quantity 

( ) with ( ) is an asymptotic estimate of ( ) the variance of ( ). 

Thus, if  is a transformation such that  has a symmetric distribution then the bootstrap 

 of the distribution of will be equal to  

with  the (  quantile of the bootstrap histogram of [  

The basic bootstrap confidence interval for  will be:- 

                          . 

     Which by applying the inverse transformations  is transformed back to the ( ) 

bootstrap percentile confidence interval for ( ) , that is :- 

                              ( )                                                                                

It involves creating many (≤5000) bootstrap samples and calculating a ( ) value for each 

bootstrap sample  then a 95% interval for ρ , for example ,would be :- 

                          .   

     Is ( ) bootstrap percentile confidence interval for (ρ*) Sample. 
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The Residual Bootstrap Interval(RM)  

For this method, many (≤5000) bootstrap samples are created and  is calculated for 

each bootstrap sample. A 95% interval for ρ, for example m would then be:- 

                      .   See Efron (1992) 

The approximate ( ) % confidence interval for . 

                                                                                           

   is ( ) bootstrap percentile confidence interval for (ρ*) Sample 

   ,  . 

Are the bootstrap samples, which generated from  sample. 

 

The Bias-Corrected And Accelerated Interval (BCa) 

Efron (1987) introduced a new approximate bootstrap confidence interval as a generalization of 

using transformation theory , he showed that of the second order accuracy of percentile bootstrap 

intervals can be gained by assuming a monotone increasing transformation  , for which the 

asymptotic distribution of the transformed estimator  is normal , and that its bias in 

estimating  is ( ), with some variance depend on  . The idea is to build the interval 

for the transformed parameter , then transform it back using ( ) to the scale of 

( ).Although ( ) is not always known, the use of the bootstrap distribution makes it possible to 

build the interval for ( ) without any knowledge of the form of transformation ( ) as long as it is 

only assumed to be existent. 

It is more natural to assume that the variance of is a function of . Efron (1987) assumed that the 

standard deviation ( ) is effected by ( ) via an "acceleration" constant (a) that is why the method 

was called accelerated bias- corrected. 

As a modified percentile interval, the (BCa) is still transformation respecting. Moreover, it has the 

additional property of being second order correct and accurate. 

Although the bootstrap-t interval is also second order correct and accurate it failed to be 

transformation respecting. The matter, which draw the attention to the (BCa) interval as the most 

promising approximate bootstrap interval. 

Assume that for some unknown monotone increasing transformation ( ), unknown bias 

correction factor ( ) and unknown sekwness correction factor (a), the transformed estimator 

[ ] for  is asymptotically normally distributed. 

,    i.e.          

   Then , 

.                                                                                      (3.4) 

With 

                                                                                                                     (3.5) 
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The derivation of the interval in this from relies essentially on the standard transformation form. 

Note from (3.4) and (3.5) that. 

 

 

Estimating The Bias Correction Constant (Z0) 
Efron (1987) introduced that:- 

       and . 

Approximating, now, , it gives; , i.e. 

     . 

Practically, it can be computed the following by the proportion of bootstrap replications less than ρ, 

i.e. 

                .                                                                                                     (3.6) 

  It measures the median bias of , i.e. the discrepancy between the median of  and ρ in normal 

units, Efron (1992) 

Acceleration Constant (a) heT .263.2. 
           Efron (1987) showed that equation (3.4)can be written as follows 

                       , 

       Thus, the acceleration constant (a) is may be written as:- 

                                                                                                                         (3.7) 

The above three formula are nearly equal for computing the constant (a) in the sense that equal ( ) of 

the coefficient of sekwness for different ways of computing these coefficients in different cases. 

           For the simple parameter case, let the estimator  have a p.d.f of the family [  is the 

density { }, and define  to be the score function of the family [ ], of the form. 

                       .                                                

In this case the formula of (a) is given by:- 

                  , 

Where,  is the sekwness of a random variable of the form  for a verification 

of the (3.7), see Efron (1987). 

        In the nonparametric case, an easy formula for estimating the constant (a) uses the Jacknife 

estimation of sekwness coefficient as follows:- 

                                                                                                                   (3.8)              
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Where  is the value of  computed from the original sample with ( ) deleted I.e.    is the 

ith delete Jacknife pseudo estimate, and      , 

is thus  the Jackknife estimation of the sekwness coefficient.         ,  is 

the Cumulative distribution function of  . 

That can be computed from the bootstrap distribution of  without any knowledge of the form of 

.This is the (BCa) interval for ( ). 

Let (a=0) the BCa will be: 

. 

  And let ( ), we get:- 

,    , 

 So that the interval reduces the percentile interval. 

  ( ), as given before. 

 From another hand, we can discuss this point as:- 

                .                                              

Where, 

            ,   .                          

Depending on .                Then, . 

And   

Finally,                                            

 

The Approximate Bootstrap Confidence Interval (ABC ) 

Efron (1992) introduced the approximate bootstrap confidence interval (ABC) for the case in which 

 can be defined smoothly in the sample observations. Their main idea was the possibility to give an 

automatic tool to be applied for finding the BCa interval. This can be done by approximating the 

bootstrap random sampling results using Taylor series expansions. The matter, which reduces the 

computational burden by an enormous factor. 

         Having observed , Efron (1992) assumed a multinomial distribution 

with support on the observed data. Formally, if we denote the resampling vector by ( ), we assume 

that ( ) has a multinomial distribution success probabilities .Our statistic has 

the form. .                                                                           

 Delta method approximation for the ( ) is:- 

                      ,                                               
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 Where, ( ) is the empirical influence component as:- 

                 ,                                           

Where ( ) is the ith cording vector . 

         Let  indicate the end point of an approximate is (100), or (  one-side upper 

confidence interval for  then (  is an approximate (100), or (   two – side 

interval. 

         A quadratic Taylor series expansion of ( ) gives approximate bias (b):- 

                                                                                                                        (3.9) 

Where, ( ) is an element of the second order influence function as:- 

              .                                                                           

The second quantity needed for ( ) is the quadratic coefficient as:- 

     .                                             (3.10)      

This coefficient measures the nonlinearity of the function  as we move in the least 

favorable direction .Let,  ,A quadratic Taylor series expansion gives:- 

 

  is called the last favorable direction,  measures the ratio of the quadratic term in 

{  . The size of ( ) does not effect the standard intervals , which treat every function 

 as if it were linear , but it has an important effect on more accurate confidence intervals.     

The bias correction constant ( ) is a function of   , these three constants are 

approximated by using a small value of  in formulas (3.6),(3.8),(3.9) and (3.10) . Then we define:- 

. and estimate  by  

                     .                                                                                      

it can be shown that  is the total curvature of the level surface   . The greater the 

curvature, the more biased is .     . 

             Where ( ) is the cumulative distribution function of . Either form of ( ) approximates 

( ) sufficiently well to preserve the second order accuracy of the (BCa) formulas. The definition of 

 is more like a median bias than a mean bias, which is why  in values quantities other than ( ). 

The ABC confidence limit for, denoted  is constructed as follows:- 
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              .                                                            

Where,  

                ,             and        . 

          The direction  is called the last favorable direction and is discussed the big advantage of the 

ABC procedure is that the constant ( ) and ( ) can be computed in terms of numerical second 

derivatives, and hence no resampling. 

  

Numerical Results of Monte Carlo Simulation 

Boardman (1974) compared some different method to obtain the confidence intervals for  in 

balanced random models using Monte Carlo simulation techniques. This chapter aim to compare 

some exact methods denoted previously by section (2.2)with some approximate methods ,see 

section(2.3) and some bootstrap methods denoted to section(3.2) obtain confidence intervals for the 

unbalanced random one- way model. For all comparison we will use the Monte Carlo simulation 

techniques along the lines of Boardman . The criteria of comparisons are the percentage of coverage, 

average length and The comparison is conducted using five of the unbalanced random one- way 

designs given by El- Ganzouri (1986)which are chosen to cover a wide range of unbalancedness and 

more details presented in the following section. 

 

The Designs of Experiment 
The following designs were selected from those of Thomas and Hultiquist (1978) to study 

confidence interval procedures in case of unbalanced random of one- way model. 

Table (1): The unbalanced random one- way designs used in our empirical study 

Values of . 
Number of 

groups ( . 
Design(i) 

10,50,500 3 

Thomas and Hultiquist design 

1 

10,10,50,50,500,500 6 2 

2,3,5,7,8 5 

Burnham  design 

3 

2,2,3,3,6,6,6,7,7,8 10 4 

3,3,3,3,3,3,3,3,3,3,3,3,3,3,33 15 5 

In order to compute the confidence intervals using the above mentioned procedures, 

1– Compute the eigenvalues ( ) and their multiplicities ( ). 

2 – Let ( ) be the number of groups having (  observations each. 

In fact, LaMotte (1976) showed that 's are the same as the roots of:- 

             .                                                                    

Let (a) be the number of distant ( ), say,  . LaMotte (1976) stated that 

Newton's method, for solving h (λ) =0, has been found to converge very quickly due to the steepness 

of [h (λ)]. We used this method to compute the  and  for the five designs of Thomas and 

Hultiquist (1978) and Burnham (1975) see El-Ganzouri (1986) . 
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Table(2):The Eigen Values and their Multiplicities for Our Designs 

Values of  Values of  Design 

1,1 14.13,94.80 1 

1,1,1,1,1,1 10,14.13,50,94.80,500 2 

1,1,1,1, 2.23,3.51,5.70,7.52 3 

1,1,1,1,2,1,1,1 2.0,2.34,3,3.56,6.0,6.54,7.0,7.74 4 

13,1 3.0,19.80 5 

 

imulationSThe  

The confidence intervals of exact methods, other approximate procedures, and the bootstrap methods 

were simulated for the five designs which were proposed by El- Ganzouri (1986).    
 

The values of  were (0.001, 0.01, 0.1,0.5,1,2,4and8) the results for α=0.05 appear in tables of 

Appendix(i). They were computed using the program and subprograms of Appendix (ii). Since the 

confidence intervals for ρ are based on location and scale invariant pivotal quantities we took  

and  , so that ρ  . For each design we generated (k) independent chi-square variables 

with ( ) degrees of freedom, say   and an independent chi-square variable with (n-

t) degrees of freedom, say,  .Let 

                                         

It be noted that   plays the role of SSW, see (2.3), while  plays the role of  , so , 

        

See (2.4) .Further  

             .    See El-Shahat (1983). 

Monte Carlo and Bootstrap methods are both computer intensive methods used frequently is applied 

statistics. The bootstrap is a type of Monte Carlo method applied based on observed data (Efron  , the 

bootstrap was described by Efron (1979) and he has written much about the method and its  

generalizations since then thousands of papers have been written on the bootstrap . However , in 

practical application , the bootstrap confidence intervals using some form of resampling with 

replacement from the actual data ,ρ , to generate (B) bootstrap samples ,( ) . Often, the data sample, 

consist of (n) independent units and it then suffices to take a simple random sample of size (n), with 

replacement. 
After, we compute SSB, SSW for every design we will generate SSB*, SSW* the bootstrap sample, 

and generate (B) bootstrap sample from SSB, SSW in order to sample of SSB*, SSW*. 

Then we will calculate the value of ρ* from SSB*, SSW* as:- 

      ,        .   Then we will arrange the values of . 

We next compute the confidence intervals for every method using the formulas in sections (2-2) and 

(3-3). we scored one if the confidence interval covered ρ, and score zero otherwise the simulated 

percentage of coverage is 100 times the total score divided by 1000 , the number of simulations  the 

results appear in tables (1-1),……(1-5). We squared the standard normal variables to get chi-square 
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variables with one degree of freedom and used the additive property of independent chi-square 

random variables with arbitrary degrees of freedom.  

However, when (n-t) was found to be larger than 100 we use the fact  to avoid 

having to generate chi-square random variables with large degrees of freedom. 

Before we compare the methods of obtaining confidence intervals for ρ for unbalanced one- way 

model ,we first point out that Wald`s  method is an exact one but is difficult to compute ,since it 

involves the solution of two non-linear equations , and we compare it with other approximate 

methods which are much easier to compute and with bootstrap methods. 

 

The Coverage 
The extent or degree to which something is observed, analyzed, and reported. We now examine 

tables (1.1)….(1.5)of Appendix (i), to study the simulated coverage for different designs and values 

of ρ . It should be noted that the nominal coverage is 95.0%.Let us consider group (1), which consists 

of designs (1) and (2). Design(1) has three groups with 10,50 and 500 observations , respectively 

,design(2) has six groups 10,10,50,50,500,and  500 observations , respectively .It is thus seen that  

more groups and imbalance are introduced as we go from design (1) to design(2), also both of the 

two designs are extremely unbalanced. 

 

Consider tables (1.1) and (1.2) which present the simulated coverage values for designs (1) and (2). 

The conservative upper limit method (CON.UL) and conservative lower limit method (CON.LL) 

have approximately the same coverage value for ρ. These two limits are fairly closely with the 

Wald`s coverage values for every value of ρ. 

 

On the other hand, the coverage value of the Arithmetic Adjusted Method (A.ADj) coverage is 

higher than Wald`s for every value of ρ. It is also higher than that of (CON.UL) and (CON.LL). In 

fact, (A.ADj) method is more conservative for every ρ. While, the Arithmetic Method (A) gives a 

close coverage to that of Wald for small values of ρ  , ρ≤ 0.01 .However ,for larger values of ρ, 

ρ>0.1, the coverage is much lower than the nominal. The Harmonic Method (H) coverage almost 

coincides, with Wald's coverage for large and intermediate values of ρ, ρ>0.1, is much Lower than 

Wald. 

Let us now compare the coverage values as we go from design (1) to design (2). The Wald coverage 

decreases for small values of ρ, ρ≤1.0, however it increases for larger values of ρ, ρ>0.1. 

 In addition, Bross method is increasing for the all values of ρ in every design. While, Tukey 

coverage decreases for every ρ .and in Anderson and Bancroft (ANDBAN) coverage decreases for 

every ρ . These two limits are fairly closely with William's coverage for every ρ. In Anderson and 

Bancroft (ANDBAN) coverage value decreases for small values of ρ, ρ≤0.5, However for large 

values of ρ, ρ>0.5, the coverage value is a constant value, as same as, in William's coverage values. 

From this we conclude that the value of Anderson and Bancroft (ANDBAN) coverage is the same 

values of William's coverage value and it's nearly to Tukey coverage values. 

The Arithmetic (A) coverage values are the same values of Anderson and Bancroft (ANDBAN) 

coverage values, this values decrease for small values of ρ, ρ≤0.5. However, for larger values of ρ, 

ρ> 0.5, the coverage values are constant value. 

        While, the William and Tukey (WILLTUK) coverage value increases for the small values of ρ, 

ρ ≤ 1. However, for larger values of ρ, ρ>1, the coverage value decreases.  



 
European Journal of Statistics and Probability  

Vol.4, No.5, pp.28-68, October 2016         

)www.eajournals.orgPublished by European Centre for Research Training and Development UK (          

- 52 - 

 

 In addition, Morigiti coverage values are the same values of Bulmer coverage values, these values of 

coverage decrease for every values of ρ. The Harmonic method (H) coverage value increases for 

every ρ.  

        In addition, The Arithmetic Adjusted method (A.ADJ) coverage is higher than the exact and 

approximate methods for every ρ. In fact, (A.ADJ) method is more conservative for every ρ.  

  Let us now compare the coverage values as we go from design(1) and (2) .the Wald,  the CON.LL, 

the CON.UL coverage are constant for every ρ. Bross coverage increases for every ρ. But about 

Tukey, Anderson and Bancroft, William and Arithmetic coverage values of ρ decreases for small 

values of ρ, ρ≤ 0.5. However ,for larger values of ρ, ρ> 0.5 ,the coverage is a constant value .William 

and Tukey coverage increases for the small values of ρ, ρ≤ 1 .However ,larger values of ρ ,ρ >1, the 

coverage decreases . Morigiti, Bulmer and Arithmetic adjusted coverage decrease for all values of ρ. 

Finally, Harmonic (H) coverage increases for every ρ in general. The (A.ADJ) Method is more 

conservative than the conservative method. 

      According to the Bootstrap Methods ,based on design (1) in the standard approximate 

method(SAM)coverage increases for the small values of ρ, ρ≤ 0.1 .However ,for the larger values of 

ρ, ρ>0.1the coverage is a constant. While, The Bootstrap-t Method (BT) coverage value increases for 

the small values of ρ,ρ≤0.5. However, for the larger values of ρ, ρ> 0.5 the coverage is constant. In 

addition, The Residual Method (RM) coverage decreases for every ρ. The Basic Bootstrap Method 

(BB) coverage increases for the small values of ρ, ρ≤0.5. However, for the larger values of ρ, ρ> 0.5 

the coverage decreases.  

       However, based on the design (2) in the coverage values of the standard approximate method 

(SAM) decreases for the small values of ρ. ρ≤ 0.1 .However, for the larger values of ρ, ρ> 0.1 it is a 

constant. While, the coverage value of Bootstrap-T Method (BT) increases for the small values of ρ. 

ρ≤ 0.1. However , larger values of ρ, ρ> 0.1it is a constant .The Residual Methods(RM) coverage 

value decreases for the small values of ρ, ρ ≤1 .However larger values of ρ ,ρ >1 the coverage value 

is a constant  .The Basic Bootstrap Method(BB) coverage value increases for small values of ρ , ρ ≤1 

. However, larger values of ρ, ρ>1the coverage value decreases. 

        Finally, we compute the percentile bootstrap confidence intervals for computing the other 

intervals not for comparing coverage values. If the bootstrap distribution of  is roughly normal , 

then the standard normal and percentile  intervals will nearly agree .The central limit theorem tells us 

that as , the bootstrap histogram will become normal shaped, but for small samples it may 

look very non- normal. Then the standard normal and percentile intervals will differ. The argument 

in favor of the percentile interval should translate into better coverage value performance.   

       The results of comparison between the coverage values of designs (1) and (2) show that: 

The (BT) coverage values increase for small values of ρ .However larger value is a constant, the 

(BB) coverage values increase for small values of ρ. However, larger values of ρ, the coverage 

values decrease. The (RM) coverage values decrease for every ρ, but in design (2) the coverage 

values decrease for small values of ρ. However, larger values of ρ, the coverage values are constant. 

Finally, (SAM) coverage values and the best method increase in design (1) but in design (2) 

coverage values decrease for small values of ρ but in twice design coverage values are constant. 

           Let us consider group (2), which consists of designs (3) and (4). Design (3) has five groups 

with 2,3,5,7 and 8 observations ,respectively, while design(4) has 10 groups with 2,2,3,3,6,6,6,7,7 

and 10 observations, respectively. It is thus seen that more groups and imbalance are introduced as 

we go from design (3) to design (4) , also design(4) is a duplicate of design(3). We can consider this 

group as a typical unbalanced design. 
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          Consider Tables (1-3) and (1-4) which present the simulated coverage values for design (3) 

and (4).The (CON.LL) and (CON.UL) methods have approximately the same coverage values for ρ, 

which agrees fairly closely with Wald's coverage values. The Bross method coverage values increase 

for every ρ. The Tukey method coverage values decrease for every ρ. William method coverage 

values increase for small values of ρ, ρ≤ 0.1, however, they decrease for larger values of ρ>0.1. 

          William method coverage values increase for small values of ρ, ρ≤ 0.5 however, they 

decreases for larger values of ρ, ρ> 0.5. William and Tukey method (WILLTUK) coverage values 

increase for small values of ρ, ρ≤ 1, however, they decrease for larger values of ρ, ρ> 1. 

           Anderson and Bancroft (ANDBAN) coverage values decrease then increase for small values 

of ρ, the for larger values of ρ. As same as ,n (A) method coverage values and the same values of 

intervals in (ANDBAN) method for the different values of ρ. Morigiti and Bulmer method coverage 

values decrease of every value of  ρ, and they have the same values of intervals for the different 

values of ρ(for every value of ρ). 

          The (H) method coverage values increase for every ρ. The (A.ADJ) method coverage values 

decrease for small values of ρ, ρ≤ 0.5, however, they increase for larger values of ρ, ρ>0.5. 

        The results of comparison between the cover values of designs (3) and (4) show that: - 

The Wald, the CON.LL, the CON.UL coverage values are constant for every value of ρ .Bross and 

(H) coverage values increase for every values of ρ. But about (ANDBAN) ,William,(A) and (A.ADJ) 

coverage values  decrease for small values of ρ, ρ≤ 0.5 .However ,for larger values of ρ, ρ> 0.5 ,the 

coverage values are constant value .  William and Tukey coverage values increase for the small 

values of ρ, ρ≤ 1. However, larger values of ρ, ρ >1, the coverage values decrease .Morigiti and 

Bulmer coverage values decrease for all values of ρ. Finally, Tukey coverage values decrease for 

every value of ρ in general. The (A.ADJ) Method is more conservative than the conservative method. 

          According to the Bootstrap Methods, for designs (3) and (4) the standard approximate method 

(SAM) increases for every ρ. The Bootstrap –T(BT) coverage values  increase for small values of ρ , 

ρ≤ 0.5 ,however , they decrease for larger values of ρ, ρ> 0.5 .The Residual Method (RM)coverage 

values increase for small values of ρ, ρ≤ 0.1 , however , they decrease for larger values of ρ ,ρ > 0.1 . 

The Basic Bootstrap Method (BB) coverage values increase for every ρ. 

         The results of comparison between the coverage values of designs (3) and (4) show that:- 

     The (SAM) and (BB) methods coverage values increase for every value of ρ. The (BT) and (RM) 

methods coverage values increase for small values of ρ, however, this coverage values decrease for 

larger values of ρ. Finally, (SAM) coverage values and the best method in bootstrap methods. 

        Let us consider group (3), which consists of design (5). Design (5)has 15 groups with 

3,3,3,3,3,3,3,3,3,3,3,3,3,3and 33observations, respectively, this design present a nearly balanced 

design with an odd group containing 33 observations . It thus seems that more groups are introduced 

as we go from groups (1) to group (3). 

 Consider Tables (1-5) which present the simulated coverage for design (5). 

The (CON.LL) and (CON.UL) methods have approximately the same coverage values for all values 

for ρ, which are too closely with Wald's coverage values. The Bross method coverage values 

increase for every value of ρ. The Tukey method coverage values decrease for every vale of  ρ. 

William method coverage values increase for small values of ρ, ρ≤ 0.1, however, they decrease for 

larger values of ρ>0.1. 

         William and Tukey method (WILLTUK) coverage values increase for small values of ρ, ρ≤ 1, 

however, it decreases for larger values of ρ, ρ> 1. 
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Anderson and Bancroft (ANDBAN) coverage values increase for small values of ρ, ρ≤0.1, however, 

they decreases for larger values of ρ, ρ>0.1. As same as in (A) method coverage values and the same 

values of intervals in (ANDBAN) method for the different values of ρ. 

The coverage values of Morigiti and Bulmer method are constant for small values of ρ, ρ≤ 0.01, 

however, they decrease for larger values of ρ ,ρ> 0.01, and they have the same values of intervals for 

the different values of ρ( for every ρ). 

While, the (A.ADJ) method coverage values decrease for every ρ. The (H) method coverage values 

increase for small values of ρ, ρ≤ 0.5, however, they are constant for larger values of ρ, ρ>0.5. 

       The results of comparison between the coverage values of designs (5) show that:- 

 the Wald,  the CON.LL, the CON.UL coverage values are constant for every value of ρ .Bross 

coverage values increase for every ρ, but about (ANDBAN) ,William,(A) and (WILLTUK) coverage 

values increase for small values of ρ, however , for larger values of ρ . Morigiti and Bulmer coverage 

values decrease for all values of ρ. (H) coverage values increase for small values of ρ .However, they 

are constant for larger values of ρ. Finally, Tukey and (A.ADJ) coverage values decrease for every 

value of ρ in general.  

The (A.ADJ) Method is more conservative than the conservative method. 

On the other hand , the coverage values of Bootstrap Methods, for designs (5) the standard 

approximate method(SAM)coverage values increase for small values of ρ , ρ≤ 0.5 ,however, they 

decrease for larger values of ρ, ρ> 0.5.  The Bootstrap –T (BT) coverage values increase for small 

values of ρ, ρ≤ 0.5, however, they decrease for larger values of ρ, ρ> 0.5 .The Residual Method 

(RM) coverage values increase for small values of ρ, ρ≤ 0.1 , however , they decrease for larger 

values of ρ, ρ > 0.1 . The Basic Bootstrap Method (BB) coverage values increase for small values of 

ρ, ρ≤ 1, however, they decrease for larger values of ρ, ρ> 1 

         Let us now compare the coverage values as we go from design (5).  The (SAM), (BT), (RM) 

and (BB) methods coverage values increase for small values of ρ, however, they decrease for larger 

values of ρ. Finally, (SAM) coverage is the best method in bootstrap methods. 

 

The Average Length 

The difference between the upper and lower limits.Let us examine Tables (2.1),…,(2.5) of appendix 

(i) , to study the simulated average length for different designs and values of ρ. 

First, we notice that the average length decreases as we go from group (1) to group (3) also that 

average length increases as the ρ values increases for each design. 

         Based on the average length, the results of tables (2.1) and (2.2) show that the results for design 

(1) and (2) for exact and approximate methods. William and Tukey (WILLTUK) Method has 

minimum average length for small values of ρ, ρ ≤0.5, however, for large values of ρ,0.5<ρ ≤4 , the 

average length continues in increasing  , but in larger values of ρ , ρ>4 ,the average length is the 

maximum value. The (A.ADJ) Method maximum average length for every ρ except ρ=8. The 

(WILLTUK) Method average length is the maximum, but in design (2) .The (A.ADJ) method, 

average length is the maximum values for every ρ. Wald method average length is larger than 

(WILLTUK) average length. But it is lower than the other methods for small values of ρ ,ρ ≤1 

,however ,for large values of ρ ,ρ>1 Wald's average length is minimum value. 

          While ,the (ANDBAN) Method average length equal the (A) Method average length for every 

ρ and the (Tukey) Method average length equal the (Morigiti) Method average length for large 

values of ρ, ρ> 0.01.  On the other hand, the results of other methods show that:- 

 Increasing for every ρ, we can summarize the previous results of exact and approximate methods in 

design (1) as follows:- 
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Table (3) :-Results of Table (2.1)for exact and approximate methods 

Ρ Comparing between methods 

0.001 WILLTUK<BROSS<WALD<TUKEY<MORGITI<BULMER<WIL<ANDBAN=A<H<A.ADJ 

0.01 WILLTUK<WALD<BROSS<TUKEY<MORIGITI<BULMER<WIL<ANDBAN=A<H<A.ADJ 

0.1 WILLTUK<WALD<TUKEY=MORIGITI<BULMER<WIL<ANDBAN=A<H< 

BROSS<A.ADJ 

0.5 WILLTUK<WALD<TUKEY=MORIGITI<BULMER<WIL<ANDBAN=A<H< 

BROSS<A.ADJ 

1 BROSS=TUKEY=MORIGITI<WILLTUK=BULMER<WIL<ANDBAN=A<H<WALD<A.ADJ 

2 WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<WILLTUK<A.ADJ 

4 WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<WILLTUK<A.ADJ 

8 WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS <A.ADJ<WILLTUK 

Table (4) :-Results of Table (2.2)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK<WALD<BROSS<TUKEY<ANDBAN=A=WIL=MORIGITI=BULMER<H<A.ADJ 

0.01 WILLTUK<WALD <TUKEY=ANDBAN=A=WIL=MORIGITI=BULMER<BROSS 

<H<A.ADJ 

0.1 WILLTUK<WALD <TUKEY=ANDBAN=A=WIL=MORIGITI=BULMER<BROSS 

<H<A.ADJ 

0.5 WILLTUK<WALD<BROSS<WIL <ANDBAN=A <BULMER<TUKEY=MORIGITI 

<H<A.ADJ 

1 WALD<BROSS<H<WIL<ANDBAN=A<WILTUK=BULMER<TUKEY=MORIGITI<A.ADJ 

2 WALD<BROSS<H<WIL<ANDBAN=A< BULMER<TUKEY=MORIGITI< WILTUK<A.ADJ 

4 WALD<BROSS<H<WIL<ANDBAN=A< BULMER<TUKEY=MORIGITI< WILTUK<A.ADJ 

8 WALD<BROSS<H<WIL<ANDBAN=A< BULMER<TUKEY=MORIGITI< WILTUK<A.ADJ 

         In addition to Bootstrap Methods comparing ,in group (1) design (1) in small values of ρ, ρ ≤ 

0.5  there are very small different between methods , but for large values of ρ, ρ > 0.5 the (BB) 

method average length has minimum value and the (BT)method average length has maximum value. 

In design (2), the (RM) method average length has a maximum value for every ρ, fairly, the (SAM) 

method average length in middle of the (BT) method average length and (BB) method average 

length. The (BB) method average length has minimum value for small values of ρ, ρ ≤ 0.5. However, 

in large values of ρ, ρ > 0.5, the (BT) method average length has minimum value. 

 

 

Table (5) :-Results of Table (2.1)for bootstrap methods  

Ρ Comparing between methods 

0.001 BT<RM<BB<SAM 

0.01 RM<BT<BT<SAM 

0.1 RM<BB<BT<SAM 

0.5 SAM<BT<BB<RM 

1 BB<RM<SAM<BT 

2 RM<BB<SAM<BT 

4 BB<RM<SAM<BT 

8 BB<RM<SAM<BT 
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Table (6) :-Results of Table (2.2)for bootstrap methods  

Ρ Comparing between methods 

0.001 BB<BT<SAM<RM 

0.01 BB=BT<SAM<RM 

0.1 BB<BT<SAM<RM 

0.5 BB<BT=SAM<RM 

ρ≥1 BT<SAM<BB<RM 

 Let us compare the average length values as we go from group (1) design (1) to design (2). All 

methods average length decreases for every ρ. However, it decreases by different rates. 

 Let us consider group (2), Tables (2-3) and (2-4) shows the exact and approximate method results. 

The William and Tukey (WILLTUK) Method has minimum average length for small values of ρ, ρ 

≤0.5, however, for large values of ρ, ρ>0.5, the average length continues in increasing to be the 

maximum value. The (A.ADJ) Method maximum average length for small values of ρ, ρ ≤ 0.01, and 

for large value of ρ , 0.01 < ρ ≤ 0.5 , the BROSS method average length has the maximum values , 

but for larger values of ρ, ρ > 0.5 ,(A.ADJ) average length is lower than the (WILLTUK) method 

average length , the (WILLTUK) Method average length is the maximum. Wald method average 

length is larger than (WILLTUK) average length, but it is lower than the other methods for small 

values of ρ, ρ ≤1, however, for large values of ρ, ρ >1 Wald's average length is minimum value. 

          The (ANDBAN) Method average length equal the (A) Method average length for every ρ and 

the (Tukey) Method average length equal the (Morigiti) Method average length for large values of ρ, 

ρ > 0.01.  

The other methods are increasing for every ρ,  

 

Table (7) :-Results of Table (2.3)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK <WALD<BROSS <WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.01 WILLTUK <WALD=BROSS <WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.1 WILLTUK<WALD<WIL <TUKEY<ANDBAN=A <BULMER=MORIGITI <H 

<A.ADJ< BROSS 

0.5 WILLTUK<WALD<WIL <TUKEY<BULMER=MORIGITI <ANDBAN=A 

<H<A.ADJ <BROSS 

1 BROSS<WALD <WIL <TUKEY<WILLTUK <MORIGITI =BULMER 

<ANDBAN=A<H <A.ADJ 

2 WALD<WIL <BULMER=MORIGITI <TUKEY<BROSS <ANDBAN=A<H 

<A.ADJ<WILLTUK 

4 WALD<WIL<BROSS <MORIGITI<BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 

8 WALD<WIL<BROSS <MORIGITI<BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 
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Table (8) :-Results of Table (2.4)for exact and approximate methods  

Ρ Comparing between methods 

0.00

1 

WILLTUK<BROSS<WALD< 

TUKEY<ANDBAN=A<BULMER=MORGITI<A.ADJ<H 

0.01 WILLTUK<WALD<BROSS< WIL<TUKEY<BULMER=MORGITI<ANDBAN=A 

<A.ADJ<H 

0.1 WILLTUK<WALD<WIL<TUKEY<ANDBAN=A<BULMER=MORIGIT<A.AD<H<B

ROSS 

0.5 WILLTUK 

<WALD<WIL<BROSS<BULMER=MORIGITI<TUKEY<ANDBAN=A<H<A.ADJ  

1 WALD<BROSS<WIL<MORIGITI=BULMER<TUKEY=WILLTUK<ANDBAN=A<H 

<A.ADJ 

2 WALD<WIL<BULMER=MORIGITI<TUKEY<BROSS<ANDBAN=A<H<A.ADJ<WI

LLTUK 

4 WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H<A.ADJ< 

WILLTUK 

8 WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H<A.ADJ< 

WILLTUK 

         About BOOTSTRAP METHODS comparing ,in group(2) design (3) and (4) the (BB) method 

average length has minimum value for every ρ, and the (BT) method average length has maximum 

value for large values of ρ,  ρ > 0.1 , and the (SAM) method average length has maximum value for 

small values of ρ ,ρ ≤ 0.1(design3) . But in design (4) the (RM) method average length has maximum 

for ρ ≤ 0.01 , and the (SAM) method average length has maximum value for ρ = 0.1 , fairly, 

the(SAM)method average length in middle of  the (BT)method average length and (BB) method 

average length . 

Table (9) :-Results of Table (2.3)for bootstrap methods  

Ρ Comparing between methods 

0.001 BB<BT<RM=SAM 

0.01 BB<BT<RM<SAM 

0.1 BB<RM<BT<SAM 

ρ≥0.5 BB<RM<SAM<BT 

Table (10) :-Results of Table (2.4)for bootstrap methods  

Ρ Comparing between methods 

0.001 BB<BT<SAM<RM 

0.01 BB<BT<SAM<RM 

0.1 BB<BT<RM<SAM 

0.5 BB<RM<SAM<BT 

Ρ ≥ 1 BB<SAM<RM<BT 

       Let us compare the average length values as we go from group (2) design (3) to design (4). All 

methods average length decreases for every ρ. However, it decreases by different rates. 

      Let us consider group (3), Tables (2-5) shows the exact and approximate method results. The 

William and Tukey (WILLTUK) Method has minimum average length for small values of ρ, ρ ≤ 0.5, 

however, for large values of ρ, ρ > 0.5, the average length continues in increasing to be the maximum 

value for larger values of ρ, ρ ≥ 4. The (A.ADJ) Method maximum average length for small values 

of ρ, ρ ≤ 0.01, and in 0.1< ρ ≤ 2, the (WILLTUK) Method average length is the maximum for ρ > 2. 
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Wald method average length is larger than (WILLTUK) average length, but it is lower than the other 

methods for small values of ρ, ρ ≤ 0.5, however, for large values of ρ, ρ >1 Wald's average length is 

minimum value. 

          The (ANDBAN) Method average length equal the (A) Method average length for every ρ and 

the (Tukey) Method average length equal the (Morigiti) Method average length for large values of ρ, 

ρ > 0.01. The other methods are increasing for every ρ. 

 

Table (11) :-Results of Table (2.5)for exact and approximate methods  

Ρ Comparing between methods 

0.001 WILLTUK <WALD<BROSS <WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.01 WILLTUK <WALD=BROSS <WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.1 WILLTUK<WALD<WIL <TUKEY<BULMER=MORIGITI <ANDBAN=A <H 

<A.ADJ< BROSS 

0.5 WILLTUK<WALD<WIL <TUKEY<BULMER=MORIGITI<BROSS 

<ANDBAN=A <H<A.ADJ  

1 WALD <WIL < BROSS<MORIGITI =BULMER <TUKEY=WILLTUK 

<ANDBAN=A<H <A.ADJ 

2 WALD<WIL<BROSS <BULMER=MORIGITI <TUKEY 

<ANDBAN=A<H<WILLTUK <A.ADJ 

4 WALD<WIL<BROSS <MORIGITI=BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 

8 WALD<WIL<BROSS <MORIGITI=BULMER <TUKEY <ANDBAN=A<H 

<A.ADJ<WILLTUK 

     About Bootstrap Methods comparing ,in group (3) design(5) the (BB) method average length has 

minimum value for every ρ, and the (BT) method average length has maximum value for large 

values of ρ, ρ > 0.1 , and the (RM) method average length has maximum value for small values of ρ 

,ρ ≤ 0.1. Fairly, the (SAM) method average length in middle of the (BT) method average length and 

(BB) method average length. 

 

Table (12) :-Results of Table (2.5)for bootstrap methods  

 Comparing between methods 

ρ≤0.1 BB<BT<SAM<RM 

ρ>0.1 BB<RM<SAM<BT 

Let us compare the average length values as we go from group (3) design (5). All methods average 

length decreases for every ρ. However, it decreases by different rates 

Another type for comparing every methods damage all methods in one compensation for each design 

(exact, approximate and bootstrap)   from this tables 

 

 

 

 

 

 



 
European Journal of Statistics and Probability  

Vol.4, No.5, pp.28-68, October 2016         

)www.eajournals.orgPublished by European Centre for Research Training and Development UK (          

- 59 - 

 

Table (13) :-Results of Table (2.1)for all methods  

 Comparing between methods 

0.001 WILLTUK<BROSS<WALD<BT<RM<BB<SAM<TUKEY<MORGITI<BULMER<WIL<AND

BAN=A<H<A.ADJ 

0.01 WILLTUK<RM<BT<BT<SAM<WALD<BROSS<TUKEY<MORIGITI<BULMER<WIL<AN

DBAN=A<H<A.ADJ 

0.1 WILLTUK<RM<BB<BT<SAM<WALD<TUKEY=MORIGITI<BULMER<WIL<ANDBAN=A

<H<BROSS<A.ADJ 

0.5 SAM<BT<BB<RM<WILLTUK<WALD<TUKEY=MORIGITI<BULMER<WIL<ANDBAN=A

<H<BROSS<A.ADJ 

1 BB<RM<SAM<BT<BROSS=TUKEY=MORIGITI<WILLTUK=BULMER<WIL<ANDBAN=

A<H<WALD<A.ADJ 

2 RM<BB<SAM<BT<WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<

WILLTUK<A.ADJ 

4 BB<RM<SAM<BT<WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<

WILLTUK<A.ADJ 

8 BB<RM<SAM<BT<WALD<TUKEY=MORIGITI<BULER<WIL<ANDBAN=A<H<BROSS<A

.ADJ<WILLTUK 

Table (14) :-Results of Table (2.2)for all methods  

 Comparing between methods 

0.001 WILLTUK<WALD<BROSS<BB<BT<SAM<RM<TUKEY<ANDBAN=A=WIL=MORIGITI=B

ULMER<H<A.ADJ 

0.01 WILLTUK<WALD<BB=BT<SAM<RM<TUKEY=ANDBAN=A=WIL=MORIGITI=BULMER

<BROSS<H<A.ADJ 

0.1 WILLTUK<WALD<BB<BT<SAM<RM<TUKEY=ANDBAN=A=WIL=MORIGITI=BULMER

<BROSS<H<A.ADJ 

0.5 WILLTUK<WALD<BB<BT=SAM<RM<BROSS<WIL<ANDBAN=A<BULMER<TUKEY=M

ORIGITI<H<A.ADJ 

1 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<WILTUK=BULMER<TUKEY=

MORIGITI<A.ADJ 

2 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<BULMER<TUKEY=MORIGITI

<WILTUK<A.ADJ 

4 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<BULMER<TUKEY=MORIGITI

<WILTUK<A.ADJ 

8 WALD<BT<SAM<BB<RM<BROSS<H<WIL<ANDBAN=A<BULMER<TUKEY=MORIGITI

<WILTUK<A.ADJ 

Table (15) :-Results of Table (2.3)for all methods  

 Comparing between methods 

0.001 WILLTUK<WALD<BROSS<BB<BT<RM=SAM<WIL<TUKEY<ANDBAN=A<BULMER=M

ORGITI<H<A.ADJ 

0.01 WILLTUK<WALD=BROSS<BB<BT<RM<SAM<WIL<TUKEY<ANDBAN=A<BULMER=M

ORGITI<H<A.ADJ 

0.1 WILLTUK<WALD<BB<RM<BT<SAM<WIL<TUKEY<ANDBAN=A<BULMER=MORIGITI

<H<A.ADJ< BROSS 

0.5 BB<RM<SAM<BT<WILLTUK<WALD<WIL<TUKEY<BULMER=MORIGITI<ANDBAN=A
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<H<A.ADJ <BROSS 

1 BB<RM<SAM<BT<BROSS<WALD<WIL<TUKEY<WILLTUK<MORIGITI=BULMER<AN

DBAN=A<H <A.ADJ 

2 BB<RM<SAM<BT<WALD<WIL<BULMER=MORIGITI<TUKEY<BROSS<ANDBAN=A<H

<A.ADJ<WILLTUK 

4 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI<BULMER<TUKEY<ANDBAN=A<H

<A.ADJ<WILLTUK 

8 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI<BULMER<TUKEY<ANDBAN=A<H

<A.ADJ< WILLTUK 

Table (16) :-Results of Table (2.4)for all methods  

Ρ Comparing between methods 

0.001 WILLTUK<BROSS<WALD<BB<BT<SAM<RM<WIL<TUKEY<ANDBAN=A<BULMER=M

ORGITI<A.ADJ<H 

0.01 WILLTUK<WALD<BROSS<BB<BT<SAM<RM<WIL<TUKEY<BULMER=MORGITI<AND

BAN=A <A.ADJ<H 

0.1 WILLTUK<WALD<BB<BT<RM<SAM<WIL<TUKEY<ANDBAN=A<BULMER=MORIGIT

<A.AD<H<BROSS 

0.5 WILLTUK<BB<RM<SAM<BT<WALD<WIL<BROSS<BULMER=MORIGITI<TUKEY<AN

DBAN=A<H<A.ADJ  

1 BB<RM<SAM<BT<WALD<BROSS<WIL<MORIGITI=BULMER<TUKEY=WILLTUK<AN

DBAN=A<H <A.ADJ 

2 BB<RM<SAM<BT<WALD<WIL<BULMER=MORIGITI<TUKEY<BROSS<ANDBAN=A<H

<A.ADJ<WILLTUK 

4 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H

<A.ADJ< WILLTUK 

8 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H

<A.ADJ< WILLTUK 

Table (17) :-Results of Table (2.5)for all methods  
Ρ Comparing between methods 

0.001 WILLTUK <WALD<BROSS < BB<BT<SAM<RM<WIL 

<TUKEY<ANDBAN=A<BULMER=MORGITI <H<A.ADJ 

0.01 WILLTUK<WALD=BROSS<BB<BT<SAM<RM<WIL<TUKEY<ANDBAN=A<BULMER=MORGITI

<H<A.ADJ 

0.1 WILLTUK<WALD< BB<BT<SAM<RM<WIL <TUKEY<BULMER=MORIGITI <ANDBAN=A <H 

<A.ADJ< BROSS 

0.5 WILLTUK<WALD<BB<RM<SAM<BT<WIL<TUKEY<BULMER=MORIGITI<BROSS<ANDBAN=A 

<H<A.ADJ  

1 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY=WILLTUK<ANDBAN=A

<H <A.ADJ 

2 BB<RM<SAM<BT<WALD<WIL<BROSS<BULMER=MORIGITI<TUKEY<ANDBAN=A<H<WILLT

UK <A.ADJ 

4 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H<A.ADJ< 

WILLTUK 

8 BB<RM<SAM<BT<WALD<WIL<BROSS<MORIGITI=BULMER<TUKEY<ANDBAN=A<H<A.ADJ<

WILLTUK 
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Looking at different tables, we can state the following remarks:- 

1- In coverage of large group (design 1 and 2) the Wald, the CON.LL, the CON. UL coverage 

are constant for every ρ .Bross coverage increases for every ρ. But about Tukey, Anderson and 

Bancroft, William and Arithmetic coverage values of ρ decreases for small values of ρ, ρ≤ 0.5 

.However, for larger values of ρ, ρ>0.5, the coverage is a constant value. William and Tukey 

coverage increases for the small values of ρ, ρ≤1. Finally, Harmonic (H) coverage increases for 

every ρ in general. The (A.ADJ) Method is more conservative than the conservative method. (BT) 

coverage increases for small values of ρ .However larger value is a constant, (BB) coverage increase 

for small values of ρ. However, larger values of ρ, the coverage decreases. (RM) coverage decreases 

for every ρ, but in design (2), the coverage decreases for small values of ρ. However, larger values of 

ρ, the coverage is constant. Finally, (SAM) coverage is the best method increases in design (1) but in 

design (2) coverage decreases for small values of ρ but in twice design coverage is a constant. 

2- In medium groups (design 3and 4) the Wald, the CON.LL, the CON.UL coverage are 

constant for every ρ .Bross and (H) coverage increases for every ρ.  But about (ANDBAN) 

,William,(A) and (A.ADJ) coverage values of ρ decreases for small values of ρ, ρ≤ 0.5. However, for 

larger values of ρ, ρ> 0.5 ,the coverage is a constant value .William and Tukey coverage increases 

for the small values of ρ, ρ≤ 1 .However ,larger values of ρ ,     ρ >1, the coverage decreases . 

Morigiti and Bulmer coverage decrease for all values of ρ. Finally, Tukey coverage decreases for 

every ρ in general. The (A.ADJ) Method is more conservative than the conservative method. The 

(SAM) and (BB) methods coverage increase for every ρ. The (BT) and (RM) methods coverage 

increase for small values of ρ, however, this coverage decrease for larger values of ρ. Finally, (SAM) 

coverage and the best method in bootstrap methods. 

3- In small groups (design 5) the Wald, the CON.LL, the CON.UL coverage are constant for   

      every ρ .Bross coverage increases for every ρ. However, about (ANDBAN), William, (A) and 

      (WILLTUK) coverage values of ρ increases for small values of ρ, however, for larger values  

      of ρ. Morigiti and Bulmer coverage decrease for all values of ρ.  (H) Coverage increases for  

      small values of ρ, however, it is constant for larger values of ρ.  Finally, Tukey and (A.ADJ)  

      coverage decreases for every ρ in general. The (A.ADJ) Method is more conservative than  

      the conservative method. The (SAM), (BT), (RM) and (BB) methods coverage increases for  

      small values of ρ, however, it decreases for larger values of ρ. Finally, (SAM) coverage and  

      the best method in bootstrap methods. 

4- In the average length for large groups (designs1) WillTuk average length has the smaller 

values for ρ≤ 0.1, then the Bootstrap methods also has small values ,but for ρ> 0.1 the smaller values 

of average length for the Bootstrap methods and the A.ADJ method is larger value for all values of ρ 

except ρ=8 WillTuk has the larger value. But in (design 2) A.ADJ has a larger value for every ρ, 

however , for ρ≤ 0.5 WillTuk method has the smallest value , and for ρ> 0.5 Wald has the smallest 

value then for every ρ  the Bootstrap methods has small values also but this values are larger than  

WillTuk and Wald. 

5- For medium  and small samples WillTuk method average length has smallest values for ρ≤ 

0.5 then Bross and Wald then the bootstrap methods but the large value for A.ADJ method , 

however, for ρ> 0.5 the bootstrap methods  is the smaller values but this values are larger than 

WillTuk method. 

Finally, after damaged the results of the coverage and average length the best methods have highest 

coverage with smallest average length. In design (1) the best method is (SAM) method, because it 

has appropriate coverage with a small value of average length for all values of ρ this method from 

bootstrap methods. In design (2) and design (5) the best method is (Wald) method, because it has 
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high coverage with a small value average length with all values of ρ this method from exact methods. 

In design (3) and design (4) the best method is (Wald) for small values of ρ, ρ≤0.1and it is an exact 

method. However, for large values of ρ, ρ>0.1 the best method is (SAM) method and it is a bootstrap 

method.  

 

An Agricultural Application 

      We apply all methods of constructing confidence intervals for   , to two data sets obtained from 

the central laboratory for design and statistical analysis research, agricultural research center, 

ministry of agriculture see El-Shahat (1983) and El-Ganzouri (1986). The data set resulted from an 

experiment in which a sample of 6 varieties of sugar- cane was compared using 28plots (area is 42 

square meters). While the second set resulted from another experiment in which a sample of 64 

varieties of wheat were compared using 247 plots (area of plot is 2 square meters). 

 

The Sugar-Cane Experiment:- 

The data for the sugar-cane experiment is given in table (18). For this data.  

Table (18): Data for The Sugar-Cane Experiment. 

Mean yield Yield of plot in kilogram( ) 
 

Varieties(i) 

722 710,665,791 3 1 

622.5 660,626,679,525 4 2 

694.6 773,721,561,592,826 5 3 

608.2 620,609,609,650,553 5 4 

657.8 633,696,626,613,721 5 5 

507.33 574,646,480,514,427,403 6 6 

The group’s sizes for the size varieties are as follows: 

3,  .  The distinct eigen values were calculated and 

the results were given in El-Ganzouri (1986): .1946, , , 

and . 

The Eigen values multiplicities are as follows:  and  

The arithmetic mean of  and the harmonic mean of . 

Using equation (2.8), (2.9) and (2.7), respectively, the sum of squares within groups (SSW) = 

113013.13, 

The sum of squares between groups (SSB) = 1561174.95 and the sample variance of treatment 

means (  = 6242.856. the calculated =MSB/MSW=6.0894, so the null hypothesis that there are 

no differences among the varieties of sugar –cane, can thus be rejected at the 0.05 level of 

significance. 

The calculated value of the ratio of the variance components 

=  =1.0976. 

 The results of comparison between the methods of constructing confidence intervals appear in 

TABLE (19). 
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Table (19): Lower and Upper Limits for  Sugar cane Design 

Length Upper limit Lower limit Methods 

8.748 

7.343 

7.483 

7.869 

8.492 

7.449 

7.442 

8.751 

9.138 

 

 

3.404 

3.777 

3.496 

1.883 

9.0033 
7.873 
7.724 

8.062 

8.9917 

7.715 

7.715 

9.0040 

9.3931 

----- 
28.3419 

3.404 

4.089 

3.496 

1.883 

0.2552 
0.531 
0.24 

0.193 
0.2590 

0.266 
0.266 

0.2527 

0.2548 

0.3166 

---- 
0.00 

0.313 
0.00 
0.00 

Wald 

Bross 
Tukey 

And Ban 

A 
Moriguti 

Bulmer 
H 

A.ADJ 
CON.LL 

CON.UL 
SAM 

Percentile 

Bt 

BB 
     The results of this table shows that the results of limits, the A.ADJ has the biggest upper limit 

and, (BB) method has the smallest upper limit. While the (A) method has the highest lower limit, 

where the bootstrap methods (BB), (BT), and (SAM) have the smallest lower limits. But, for average 

length, the best method that has the smallest average length, and the best method is (BB) . 

        While the bootstrap methods where appear minus lower limits so we exchange this values with 

zero this methods have very closely limits the bigger upper limits in it  the percentile methods it has 

also the bigger lower limit and it is only positive limit . 

 

The Wheat Experiment 

The data for the wheat experiment was given in table (20) the group sizes for the sixty-four varieties 

are: 

 Values are: λ1=2 , λ2=2.0305, λ3=3, λ4=1 and λ5 =56. 

The arithmetic mean of λi (λA)=3.8586 and the harmonic mean of 3.7833. 

Using equation (2.3),(2.4)and(2.7) ,respectively, the sum of squares within groups(SSW)= 4.27,the 

sum of squares between groups (SSB)= 6.94 and the sample variance of treatment means 

( =0.029. 

The calculated =MSB/MSW=4.7253, so the null hypothesis that there are no differences among the 

varieties of sugar –cane ,can thus be rejected at the 0.05 level of significance .The calculated value of 

the ratio of the variance components 

= =0.9803. 

The results of comparison between the methods of constructing confidence intervals appear in 

TABLE (21). It shows that bootstrap methods is larger than the exact and approximate methods, it 

indicates that Bross method is the shortest then Morigiti=Bulmer then Tukey method but the largest 

method is (SAM) then Bootstrap-t then Wald then A.ADJ. While, in case of coverage the largest 

upper limit for Bootstrap-t method and the smallest upper limit for Morigiti and Bulmer. But the 

largest lower limit for Bross method and smallest lower limit for And Ban .The results of limits, the 
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(Bt ) has the biggest upper limit  and Morigiti and Bulmer have the smallest upper limit .While 

,Bross has the highest lower limit ,Where the And Ban has the smallest lower limit. But, for average 

length, the best method that has the smallest average length ,and the best method is Bross method.     

 

TABLE(20):Data for The Wheat Experiment 

 

Mean yield Yield of plot in 

kilogram 

ni Varieties 

34.1 1.28, 1.574 2 3 

342.1 1.44,1.15 2 2 

3411 1.37,1.45,123 1 1 

34211 1.35,1.16,1.1 1 . 

342. 1.17,1.35,1.2 1 1 

341.1 2.1,1.25,1.44, 1 6 

14.11 0.91,1.1,0.92 1 1 

34211 1.27,1.2,1.5,1.08 . 8 

341.1 1.09,1.56,1.47,1.45 . 6 

341 1.02,1.38,1.33,1.47 . 31 

34231 1.16,1.3,1.25,1.14 . 33 

34111 1.38,1.34,1.4,1.29 . 32 

34361 1.29,1.05,1.29,1.02 . 31 

34..8 1.43,1.45,1.55,1.36 . 3. 

34118 1.24,0.9,1.1,1.07 . 31 

34221 1.33,1,1.27,1.3 . 36 

34131 1.14,0.96,1.1,1.05 . 31 

34111 1.32,1.22,1.49,1.3 . 38 

34111 1.3,1.12,1.51,1.57 . 3. 

342.8 1.36,1.42,1.28,1.13 . 21 

34131 1.45,1.34,1.64,1.62 . 23 

342.1 1.36,1.22,1.35,1.25 . 22 

14..1 1.06,0.84,1.04,1.04 . 21 

343.1 0.83,1.21,1.27,1.27 . 2. 

343.8 1.28,1.16,1.05,1.1 . 21 

34321 1.15,0.84,1.31,1.2 . 26 

34121 1.05,0.93,1.05,1.06 . 21 

341.1 0.88,1.13,1.05,1.32 . 28 

34231 1.29,1.19,1.22,1.16 . 2. 

Mean yield Yield of plot in 

kilogram 

ni Varieties 

34161 1.32,1.47,1.55,1.12 . 11 

3428 1.23,1.04,1.15,1.41 . 13 

3412 1.36,1.24,1.43,1.25 . 12 

341.1 0.9,1.12,0.9,1.26 . 11 

342. 1.08,1.24,1.47,1.37 . 1. 
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34321 1.26,1.16,1.15,0.92 . 11 

34261 1.23,1.21,1.45,1.16 . 16 

3431 1.23,1,1.16,1.29 . 11 

342.1 1.32,1.23,1.22,1.21 . 18 

34311 1.21,1.02,1.14,1.16 . 1. 

34218 1.15,1.17,1.3,1.33 . .1 

34231 1.3,1.15,1.24,1.17 . .3 

3422 1.17,0.8,1.33,1.48 . .2 

34118 1.19,1.52,1.25,1.49 . .1 

343.8 1.24,1.36,1.06,1.13 . .. 

34211 1.17,1.24,1.32,1.08 . .1 

34211 1.4,1.34,1.2,1.16 . .6 

34318 1.18,1.21,1.24,1.08 . .1 

34121 1.37,1.3,1.32,1.3 . .8 

1481 0.85,0.84,1.07,0.64 . .. 

34111 0.95,1.12,0.99,1.16 . 11 

341.8 1.06,1,1.08,1.25 . 13 

34318 1.27,1.01,1.12,1.15 . 12 

34118 1.39,1.2,1.52,1.12 . 11 

34138 1.13,1.28,163,1.23 . 1. 

14.6 0.99,0.95,1.02,0.88 . 11 

34181 0.89,1.14,1.11,1.19 . 16 

14.18 1.02,1.02,1.1,0.62 . 11 

14.18 0.98,0.78,1.1,0.89 . 18 

34118 0.82,0.9,1.16,1.27 . 1. 

14818 0.94,0.75,0.99,0.75 . 61 

14..1 1.1,0.8,1.08,1 . 63 

14.21 0.94,0.81,0.92,1.03 . 62 

1486 0.91,0.96,0.92,0.66 . 61 

1411 0.83,0.67,0.72,0.7 . 6. 
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Table (21): Lower and Upper Limits for  Wheat Designs. 

Length Upper limit Lower limit Methods 
1.076 

1481 

14.16 

341.1 

34113 

14.3. 

14.3. 

1.077 

1.077 

 

 

3423 

3431 

1.6659 
1.773 
341.1 

34638 

346631 

34111 

34111 

1.6670 

1.6657 

----- 
1.7899 

1.925 

34.2. 

0.5902 
0.904 

146.3 

14113 

141.11 

14621 

14621 

0.5899 

0.5891 

0.5886 

---- 
0.804 
0.799 

Wald 

Bross 
Tukey 

And Ban 

A 
Moriguti 

Bulmer 
H 

A.ADJ 
CON.LL 

CON.UL 
SAM 

Bt 
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