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INTRODUCTION 

 

Many problems encountered in the various branches of science, engineering and  management give rise to 

differential equations of the form: 

 

 bxayxyyxfy  ,=)(),,(= 00                                                                         (1.1) 

 where f is assumed to be Lipschiz constants. 

The solution of (1.1) has been discussed by various researchers among them are [see Lie and Norsett (1989), 

Onumanyi et al. (1994, 1999, 2002), Sirisena [(1999, 2004), Lambert (1973) and Gear (1971)]. However, 

experience has shown in [Lie and Norsett (1989), and Onumanyi et al. (1994)] that the traditional multistep 

methods including the hybrid ones can be made continuous through the idea of multistep collocation. These 

earlier works have focused on the construction of continuous multistep methods by employing the multistep 

collocation. The continuous multistep methods produce piecewise polynomial solutions over k-steps 

],[ knn xx   for the first order systems of ordinary differential equation (ODEs). Sirisena et al. (2004) 

developed a continuous new Butcher type two-step block hybrid multistep method for problem (1.1). The 

results obtained showed a class of discrete schemes of order 5 and error constants ranging from 
5

6 101.45= C  to 4

6 101.790= C . In Areo et al. (2009), we reported one-step embedded Butcher type 

two-step block hybrid schemes employing basis functions as approximate and more recently we proposed 

sixth-order hybrid block method for the numerical solution of first order initial value problems, see Areo et 

al. (2013) , but in this paper effort is being made to extend the scope. In this paper, we propose block 
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implicit one-step method for the numerical integration of initial value problems in ordinary differential 

equations. 

 

 

The Derivation of the Method 

 

In this section, the derivation of the continuous formulation of the proposed block implicit one-step method 

for the numerical integration of initial value problems in ordinary differential equations is presented and 

employs it to deduce the discrete ones. The continuous scheme is used to obtain finite difference methods 

which are combined as simultaneous numerical integrators to constitute conveniently the block method. 

 

In order to derive the continuous scheme, the method of Sirisena et al. (2004) is applied where a k-step 

multistep collocation method with m collocation points was obtained as follows: 

 )(,x()()()(=)( j

1

0=

1

0=

_

jj
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j

jnj

t

j

xyfxhxyxxy  

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

                                            (2.1) 

where )(xj  and )(xj  are the continuous coefficients of the method. Where )(xj  and )(xj  are 

defined as 
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 and 

  10,1,2,...,;=)( 1,

1

1


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

 tjxx j

ij

mt

i

j 
                                                                

(2.3) 

 jnx  : 10,1,2,...,= tj  in (2.1) are )(0 kt   arbitrary chosen interpolation points taken from },...,{ knn xx   

and jx


: 10,1,...,= mj  are the m collocation points belonging to },...,{ knn xx  . To get )(xj  and )(xj , 

Sirisena et al. (2004) arrived at a matrix equation of the form 

IDC =                                                                                                                     (2.4) 

Where I is the identity matrix of dimension )()( mtmt   while D and C are matrices defined as  
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 (2.5) 

The above matrix (2.5) is the multistep collocation matrix of dimension )()( mtmt   and  
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 (2.6) 

 Where t  and m  are defined as the number of interpolation points and the number of collocation points used 

respectively. The columns of the matrix 1= DC  give the continuous coefficients 

 10,1,...,=;)(10,1,...,=;)(  kjxandkjx jj   
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The proposed sixth-order hybrid block method was developed subjected to the following conditions for 

matrix D: 
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   becomes (2.1) and
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     (2.7)                                                                                                                                 

Thus the matrix D in (2.5) becomes 
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Thus, the elements of 1= DC  were obtained such that )(= , jicC , 8,1  ji    

From (2.2) and (2.3) using the elements of 1= DC  we have,  

342567

70 )(1854720)(2408448)(1548288)(393216[
1159

1
)( hxxhxxhxxxx

h
x nnnn   

                            ]1159)(112896)(713216 75243 hhxxhxx nn                   (2.9) 

342567

7
4

1 )(1854720)(2408448)(1548288)(393216[
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1
)( hxxhxxhxxxx

h
x nnnn   

                  ])(112896)(713216 5243 hxxhxx nn                              (2.10) 
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1
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h
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342567

6
4

3 )(421680)(787584)(666368)(208896[
2745

1
)( hxxhxxhxxxx

h
x nnnn   

                ])(755712)(8843264 5243 hxxhxx nn                  (2.14) 



International Journal of Mathematics and Statistics Studies  

Vol.2, No.3, pp.4-13, July 2014 

                               Published by European Centre for Research Training and Development UK (www.ea-journals.org) 

7 

 

342567

6
8

7 )(37847040)(73089024)(64618496)(21233664[
365085

1
)( hxxhxxhxxxx

h
x nnnn 

  

                      ])(755712)(8843264 5243 hxxhxx nn                                    (2.15) 

342567

61 )(2272800)(4502592)(4129024)(1425408[
104310

1
)( hxxhxxhxxxx

h
x nnnn   

              ])(44163)(522388 5243 hxxhxx nn                                                (2.16) 

 

On substituting equations (2.9)-(2.16) the above into (2.7), we obtained the continuous scheme as follows:  

      342567

7
)(1854720)(2408448)(1548288)(393216[

1159

1
)( hxxhxxhxxxx

h
xy nnnn   

            ]1159)(112896)(713216 75243 hhxxhxx nn  ny  

342567

7
)(1854720)(2408448)(1548288)(393216[

1159

1
hxxhxxhxxxx

h
nnnn   

])(112896)(713216 5243 hxxhxx nn 
4

1n
y   

342567

6
)(103746720)(128086464)(79962368)(19931136[

730170

1
hxxhxxhxxxx

h
nnnn 

 

 65243 )(730170)(9182031)(44148236 hxxhxxhxx nnn  nf]   

  

342567

6
)(18652080)(26149248)(17647360)(4632576[

52155

1
hxxhxxhxxxx

h
nnnn   

   5243 )(745920)(6270016 hxxhxx nn 
4

1]
n

f  

342567

6
)(8938560)(14977344)(11435008)(3280896[

52155

1
hxxhxxhxxxx

h
nnnn   

])(211806)(2311636 5243 hxxhxx nn 
2

1n
f  

342567

6
)(421680)(787584)(666368)(208896[

2745

1
hxxhxxhxxxx

h
nnnn   

])(211806)(2311636 5243 hxxhxx nn 
4

3n
f  

342567

6
)(37847040)(73089024)(64618496)(21233664[

365085

1
hxxhxxhxxxx

h
nnnn   

])(755712)(8843264 5243 hxxhxx nn 
8

7n
f  

342567

6
)(2272800)(4502592)(4129024)(1425408[

104310

1
hxxhxxhxxxx

h
nnnn   

])(44163)(522388 5243 hxxhxx nn  1nf                                          (2.17) 

Now, evaluating (2.17) at 
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THE BASIC PROPERTIES OF THE METHOD 

 

Order, Error Constant and Consistency of the Method 

The six finite difference schemes (2.18)-(2.23) derived are discrete schemes belonging to the class of Linear 

Multistep Method (LMM) of the form  
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 This is a method associated with a linear difference operator,  
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 where )(xy  is an arbitrary function continuously differentiable on the interval ],[ ba . The Taylor series 

expansion about the point x ,  
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 Definition 3.1: The method (3.1) is said to be of order P  if 0===== 210 pCCCC   and 01 pC  is the 

error constant, see Lambert (1973). Applying this definition to equations (2.18)-(2.23) which make up the 

block method, it is verified that each of the six difference schemes is of order Tp 7),(7,7,7,7,7=  with error 

constants 

T)
0644977867096

169895
,

405742290534

33411
,

4253548544

1
,

68646720120579

96775
,

0733444460168918

1557875
,

664616960

1
(


. 

Definition 3.2: A LMM of the form (3.1) is said to be consistent if the LMM is of order 1p . Since 

the discrete schemes derived in (2.18)-(2.23) are of order 1  according to Definition 3.2, therefore, the 

schemes are consistent.  

 

Zero-Stability and Convergence of the Method 

It is known from the literature that the stability of a LMM determines the manner in which the error is 

propagated as the the numerical computation proceeds. Hence, the investigation of the zero-stability 

property is necessary. 

 

Definition 3.3: According to Lambert (1973), The LMM is said to be zero - stable if no root of the first 

characteristic polynomial )(  has modulus greater than one, and if every root with modulus one is  

simple, where j

j

k

j
  0=

=)( . The investigation carried out on the six difference schemes in  

(2.18)-(2.23) revealed that all the roots of the derived schemes are less than or equal to 1; hence the schemes 

are zero-stable. Since the consistency and zero-stable of the schemes (2.18)-(2.23) have been established, 

then the proposed hybrid block method is convergent, see Lambert (1973) and Fatunla (1988). 

 

Numerical Experiment 
In this section, the concern is the application of the schemes derived in section two in block form on some 

initial value problems with test problems 4.1.1-4.1.3 and an application problem 4.1.4:  

 

Problems 
 

 Problem 4.1.1:  

 xexyandxhyyy  =)(10.1,0=1,=(0);=  

[see Sirisena et al. (1999 and 2004) and Areo et al. (2009 and 2013)] 

 

Problem 4.1.2: 

 10.1,0=2,=(0)1;)8(=  xhyxyy  

 xxxy 82=)(    

[see Sirisena et al. (1999 and 2004) and Areo et al. (2009 and 2013)] 

 

Problem 4.1.3: 

 10.1,0=0,=(0),=  xhyyxy  

 1=)(  xxxy   

[see Sirisena et al. (1999 and 2004) and Areo et al. (2009 and 2013)] 

 

Problem 4.1.4: Considering the discharge valve on a 200 -gallon tank that is full of water opened at time 

0=t  and 3  gallons per second flow out. At the same time 2  gallons per second of 1 percent chlorine 

mixture begin to enter the tank. Assume that the liquid is being stired so that the concentration of chlorine is 
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consistent throughout the tank. The task is to determine the concentration of chlorine when the tank is half 

full. It takes 100  seconds for this moment to occur, since we lose a gallon per second. If )(ty  is the amount 

of chlorine in the tank at time t , then the rate chlorine is entering is 
100

2
 gal/sec and it is leaving at the rate 
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Thus, the resulting IVP is 
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whose analytical solution is 
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[See John L. Van Iwaarden (1985) and Areo et al. (2013)]  

 

 

RESULTS 

 

The comparison of errors for problems 4.1.1-4.1.4 are shown in the tables below.   

 

Table  1: Comparison of absolute errors for Problem 4.1.1 

  
X Sirisena et al. 

(2004) 

Areo et al. (2009) Areo et al. (2013) Proposed Method 

0.1 2.00×10-9 3.60×10-10 0.0 0.0 

0.2 2.00×10-9 1.80×10-10 0.0 0.0 

0.3 1.00×10-9 5.80×10-10 0.0 0.0 

0.4 2.00×10-9 7.40×10-10 0.0 0.0 

0.5 1.00×10-9 8.10×10-10 0.0 0.0 

0.6 3.00×10-9 9.90×10-10 1.00×10-10 1 x 10-10 

0.7 2.00×10-9 9.90×10-10 0.0 0.0 

0.8 3.00×10-9 1.00×10-9 1.00×10-10 1  x 10-10 

0.9 3.00×10-9 1.10×10-9 0.0 0.0 

1.0 3.00×10-9 1.20×10-9 1.00×10-10 1  x 10-10 

 

 

 

Table  2: Comparison of absolute errors for Problem 4.1.2 

   
X Sirisena et al. 

(2004) 

Areo et al. (2009) Areo et al. (2013) Proposed Method 

0.1 3.60×10-4 7.20×10-6 1.99×10-7 5.70×10-9 

0.2 1.50×10-4 6.50×10-6 1.79×10-7 5.30×10-9 

0.3 5.90×10-5 4.40×10-6 1.20×10-8 3.00×10-9 

0.4 1.60×10-5 2.60×10-6 7.23×10-8 2.20×10-9 

0.5 4.30×10-5 1.50×10-6 3.98×10-8 4.00×10-10 

0.6 2.10×10-5 8.00×10-7 2.80×10-8 5.00×10-10 

0.7 5.70×10-7 4.20×10-7 1.10×10-8 1.00×10-10 

0.8 1.60×10-6 2.10×10-7 5.30×10-9 4.00×10-10 

0.9 5.10×10-6 1.10×10-7 2.30×10-9 5.00×10-10 

1.0 2.80×10-6 5.30×10-8 1.00×10-9 0.0 
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Table  3: Comparison of absolute errors for Problem 4.1.3 
  

X Sirisena et al. 

(2004) 

Areo et al. (2009) Areo et al. (2013) Proposed Method 

0.1 2.00×10-9 3.80×10-11 0.0 0.0 

0.2 2.10×10-9 7.80×10-11 0.0 0.0 

0.3 1.70×10-9 1.00×10-10 6.00×10-10 6.0 x 10-10 

0.4 0.00 1.30×10-10 3.00×10-11 3.0 x 10-11 

0.5 6.70×10-9 2.10×10-10 0.0 0.0 

0.6 0.00 1.90×10-10 1.00×10-10 1.0 x 10-10 

0.7 1.00×10-9 1.90×10-10 0.0 0.0 

0.8 0.00 2.20×10-10 0.0 0.0 

0.9 0.00 2.40×10-10 0.0 0.0 

1.0 0.00 2.70×10-10 1.00×10-10 1.0 x 10-10 

    

 

 

Table  4: Comparison of absolute errors for Problem 4.1.4 

  
X Areo et al. (2013) Proposed Method 

0.1 0.0 0.0 

0.2 0.0 0.0 

0.3 2.40×10-11 0.0 

0.4 2.40×10-11 0.0 

0.5 2.40×10-11 0.0 

0.6 3.00×10-11 0.0 

0.7 3.00×10-11 0.0 

0.8 3.00×10-11 0.0 

0.9 3.00×10-11 0.0 

1.0 3.00×10-11 0.0 

 

CONCLUSION 

A collocation approach which produces a family of order seven multiderivative schemes has been proposed 

for the numerical integration of initial value problems in ordinary differential equations. The errors arising 

from Problems 4.1.1-4.1.3 using the proposed method were compared with those obtained by Sirisena et al. 

(2004), Areo et l. (2009) and Areo et al. (2013) respectively, who earlier solved the same problems while the 

errors arising from Problem 4.1.4 were compared with Areo (2013). 

 

A close look at the tables presented above reveal that the newly proposed method perform better than those 

compared with. The method is also desirable by virtue of possessing high order of accuracy.  
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