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ABSTRACT: In this paper, block implicit one-step method of order seven is proposed for the numerical
integration of first order initial value problems. The method is based on collocation of the differential system
and interpolation of the approximate at the grid and off-grid points. The procedure yields six consistent
finite difference schemes which are combined as simultaneous numerical integrators to form block method.
The method is found to be zero-stable hence convergent. The accuracy of the method is tested with some
standard first order initial value problems. The results show a better performance over the existing methods.
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INTRODUCTION

Many problems encountered in the various branches of science, engineering and management give rise to
differential equations of the form:

y' = f(%¥),y(X%) = Yp,a<x<b (1.1)

where f is assumed to be Lipschiz constants.
The solution of (1.1) has been discussed by various researchers among them are [see Lie and Norsett (1989),
Onumanyi et al. (1994, 1999, 2002), Sirisena [(1999, 2004), Lambert (1973) and Gear (1971)]. However,
experience has shown in [Lie and Norsett (1989), and Onumanyi et al. (1994)] that the traditional multistep
methods including the hybrid ones can be made continuous through the idea of multistep collocation. These
earlier works have focused on the construction of continuous multistep methods by employing the multistep
collocation. The continuous multistep methods produce piecewise polynomial solutions over k-steps
[x,,X,.] for the first order systems of ordinary differential equation (ODEs). Sirisena et al. (2004)
developed a continuous new Butcher type two-step block hybrid multistep method for problem (1.1). The
results obtained showed a class of discrete schemes of order 5 and error constants ranging from
C, =1.45x10"° to C,=1.790x10"*. In Areo et al. (2009), we reported one-step embedded Butcher type
two-step block hybrid schemes employing basis functions as approximate and more recently we proposed
sixth-order hybrid block method for the numerical solution of first order initial value problems, see Areo et
al. (2013) , but in this paper effort is being made to extend the scope. In this paper, we propose block
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implicit one-step method for the numerical integration of initial value problems in ordinary differential
equations.

The Derivation of the Method

In this section, the derivation of the continuous formulation of the proposed block implicit one-step method
for the numerical integration of initial value problems in ordinary differential equations is presented and
employs it to deduce the discrete ones. The continuous scheme is used to obtain finite difference methods
which are combined as simultaneous numerical integrators to constitute conveniently the block method.

In order to derive the continuous scheme, the method of Sirisena et al. (2004) is applied where a k-step
multistep collocation method with m collocation points was obtained as follows:

YO0 = 3, 00Y0,,) 13,09 (%, 9(5,) @)

where «;(x) and g;(x) are the continuous coefficients of the method. Where «;(x) and f;(x) are
defined as

aj(x)=t+_zm:lajyi+lxj; je{ol,...t-1} (2.2)
and )
Bi(x)= 2 Biaax’; je{0.1,2,..,t-1} (2.3)

X,.;j- 1=0,1,2,.,t=1in (2.1) are (0<t<Kk) arbitrary chosen interpolation points taken from {x,...,X ., }

and x_j : j=0,1,...,m-1 are the m collocation points belonging to {x,,..., X, }. To get «;(x) and f,(x),
Sirisena et al. (2004) arrived at a matrix equation of the form

DC=1 (2.4)
Where | is the identity matrix of dimension (t +m)x (t+m) while D and C are matrices defined as
1 X, X? xem
1 Xn+l Xri—l X:—T&
D = 1 Xn+t—l Xrirt—l X;-:rtn—_ll (25)
0 1  2X t+m-1)xo
0 1 2Xm (t+m—1)xon
The above matrix (2.5) is the multistep collocation matrix of dimension (t+m)x(t+m) and
Oo1 Oy o Oy, hB, . hB1a
a a a h hg,
C — ?,2 1,2 t:—l,2 ﬁ:O,Z ﬁ: 1,2 (26)
aO,Hm al,t+m at—l,t+m hﬂO,Hm hﬂm—l,wm

Where t and m are defined as the number of interpolation points and the number of collocation points used
respectively. The columns of the matrix C = D™ give the continuous coefficients
a;(x); J=01,..,k-1 and g;(x); j=01,.,k-1
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The proposed sixth-order hybrid block method was developed subjected to the following conditions for
matrix D:

E=L1% =%,% = xm%} m=7%=x,% = Xy Ko =Xy K =X g Koy =X o Rigr =X g Xy = Xt | 27)

and (2.1) becomes

00 =ty (93, +ay, (Y, y, +] (0, + B 00T,y + By 00T,y + By, 00T, 5+ B, 00,y 4,00

Thus the matrix D in (2.5) becomes

1 X, X2 X3 X} x> x° x!
1 X x> x3 x* x° x° X'
n+% n+% n+% n+% n+% n+% n+%
0 1 2X, 3x§ 4x§ 5x,‘]‘ 6x,f 7x°
0 1 2x X2 X3 N x> 7x°
D _ FH-% n+}/ n+}/ n+}/ n+}/ 2+% (2 8)

0 1 2X 3x? 4x3 5x* 6x° 7X '
n+% n+}/ n+}/ n+}/ n= y r;+%

0 1 2X 3x?2 4x3 5x* 6x° X
n=3, n+/ —y n+/ n+/ n+y

0 1 2X 3x? 4x3 5x* 6x>
n+% n+/ n+/ n= / n+/ n+/

_O 1 2Xn+l 3Xr?:l 4Xn+1 5Xn =1 6XnJrl 7Xr?+l _

Thus, the elements of C = D" were obtained such that C = (c;),1<i,j<8
From (2. 2) and (2.3) using the elements of C = D" we have,

ozo(x)—1159h7 [393216(x — x,)" —1548288(x — X,)°h + 2408448(x — x,)°h? —1854720(x — x,)*h®

+713216(x — x)*h* —112896(x — x_)*h® +1159h"] (2.9)
ay, (X) = ﬁ [-393216(x — X, )" +1548288(x — X, )°®h — 2408448(x — X, )°h* +1854720(x — X, )*h®
A
—713216(x — X, )*h* +112896(x — x,)*h°] (2.10)

fo ()=~ [19931136(x - x, )7 —79962368(x — X, )°h +128086464(x — X, )*h? —103746720(x — X, )*h?

+44148236(x — x,)°h* —9182031(x — x, )?h® + 730170(x— x )h®]  (2.11)

,B}/ (X) = 1 [4632576(x X.)" —17647360(x — X,)°h + 26149248(x — X, )°h? —18652080(x — X, )*h®
+ 6270016(x —x,)*h* —=745920(x — x,)*h® ] (2.12)
,B}/ (x) = ﬁ[—3280896(x —X,)" +11435008(x — x,)°h —14977344(x — X, )°h? +8938560(x — x,,)*h®
— 2311636(x — X, )*h* + 211806(x — X, )2h°] (2.13)

1
X) =————[208896(x — X,)" —666368(x — X,)°h + 787584(x — x,)°h* — 421680(x — x,)*h®

—8843264(x — X, )*h* + 755712(x — X, )°h°] (2.14)
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1

o | 21233664(x — X, )" + 64618496(x - x,)°h — 73089024(x — X,)*h” + 37847040(x - x,) "’

By ()=
—8843264(x — X, )*h* + 755712(x — X, )*h°] (2.15)
1

104310h°
+522388(x — X )*h* —44163(x — x,)?h°] (2.16)

B.(X) = [1425408(x — X )" — 4129024(x — X.)® h + 4502592(x — X )*h? — 2272800(x — X, )* h?

On substituting equations (2.9)-(2.16) the above into (2.7), we obtained the continuous scheme as follows:

¥(x) = Ti5oh [393216(x — x,)" —1548288(x — X, )®h + 2408448(x — X, )°*h?* —1854720(x — X, )*h®
+713216(x — X, )*h* —112896(x — X, )2h® +1150h"] y,
+ 11519 —7[-393216(x ~ x,)" +1548288(x — x,)°h — 2408448(x - X,)°h’ +1854720(x - X, )" h°
—713216(x—x_)*h* +112896(x — x_)*h°] Yooy,
4
4 m[lggsme(x —x.)7 —79962368(x — X )®h +128086464(x — X, )°h? —103746720(x — X, )*h®

+44148236(x — x,)*h* —9182031(x — x_)?h® + 730170(x — x )h® ] f_

+ ﬁmﬁszsm(x —X,)" —17647360(x — X, )®h + 26149248(x — X, )°h* —18652080(x — X )* h*
+6270016(x — X, )°h* —745920(x — x,)*h° ] fn+}/

4
+ ﬁ[—BZSOS%(X —X,)" +11435008(x — X, )*h —14977344(x — x,)°h* +8938560(x — X, )* h*
- 2311636(x - x,)°h* + 211806(x—x,)*h°] T,

2
+ 27415h6 [208896(x — X, )7 —666368(x — X, )® h+ 787584(x — X, )*h? — 421680(x — X, ) *h*
~2311636(x-x,)°h* + 211806(x—x,)'h°] .

4
+ W [-21233664(x — X, )7 +64618496(x — X, )® h — 73089024(x — X, )*h? + 37847040(x — X, )* h?
~8843264(x—x,)°h* + 755712(x %)’ h°] f, .

8
+ ;6[1425408(x —x.)7 — 4129024(x — x,)*h + 4502592(x — x.)* h? — 2272800(x — X, )* h?

104310h

+522388(x — X,)°h* —44163(x—x,)°h°] f, , (2.17)

. 3 B B B 3 : " —
Now, evaluating (2.17) at X=X,,,X= X’”l%e’ X = xm% X = xm% X = xw}/2 and its 1% derivative

atx = Xn+17 , we obtain the following six discrete schemes which constitute the block method:
16
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135y _1024y _h
1159 °" 1159 °™% 81130

[5431, +10080f , +24108f, , +12768f . +12288f , +3423f,,]
(2.18)
+306622470 f
n+%

You —

42229 = 254475 N 91820851, +140424900f

Yoas(s ~ 206704 0"~ 296704 ™% 1063387136 b

+192150420f ,, +114069120 fn+y +6466845f, ] (2.19)
4 8

%

y 585 31213 h
7 37088°" 37088°™% 21362688
+797440f , ~85751,,] (2.20)
8

160 999 h
_ - - 2703f +42378f 94458 f 40698f . —7680f 903 f
Yo% "1159 7" 1150 Vnts 324520[ n g " g 3 g ral

(2.21)

1755f, +511448f , +428680f , —122360f
[517551, +511448f , +428680f, , —122360f, .

[210175f, +2925790f , +6036800f , +4236050f .
I'I+}{1 n+% I'H~A

311 848 h

Yo%, T1159 7" 1159 Y T 2920680
+69632f, ~13055f,.] (2.22)
8

2816568315 y .- 2816568315 y = h [-10999296 f — 44538795 f
593408 "/ 593408 299077632 m
—145350513 fn+y + 333571392 fn+y —299077632 f
4 8

1295167 f
%+5 9516 g

+78426117F, ]  (2.23)

15
n+ e

THE BASIC PROPERTIES OF THE METHOD

Order, Error Constant and Consistency of the Method
The six finite difference schemes (2.18)-(2.23) derived are discrete schemes belonging to the class of Linear
Multistep Method (LMM) of the form

k k
()Y, ) =D B0 F (%), (3.1)
j=0 i=0
This is a method associated with a linear difference operator,
k
LLy(x);h]= D (@;y(x+ jh) =hpy (x+ jh)) 3.2)
j=0

where y(x) is an arbitrary function continuously differentiable on the interval [a,b]. The Taylor series
expansion about the point X,
LLy(x); h] = Coy(X) +chy (X)+Ch?y (%) +---+¢ hTy (), 3.3)
where
Co=ay+o +...+,
C,=(ay+ay+...+)— (Lo + B +...+ )

: . 1 ) i
Cq :a(al"'zqaz+"'+kqak)_m(ﬁl+2q lﬂ2+"-+kq 1ﬂk)1q =23

(3.4)
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Definition 3.1: The method (3.1) is said to be of order P if C,=C,=C,=... =C =0and C_, #0 is the
error constant, see Lambert (1973). Applying this definition to equations (2.18)-(2.23) which make up the
block method, it is verified that each of the six difference schemes is of order p = (7,7,7,7,7,7)" with error
constants

( -1 1557875 96775 1 33411 —169895

.
664616960 ' 4460168918073344 ' 67201205796864 ' 4253548544 ' 574229053440 4977867096064) '
Definition 3.2: A LMM of the form (3.1) is said to be consistent if the LMM is of order p>1. Since

the discrete schemes derived in (2.18)-(2.23) are of order >1 according to Definition 3.2, therefore, the
schemes are consistent.

Zero-Stability and Convergence of the Method

It is known from the literature that the stability of a LMM determines the manner in which the error is
propagated as the the numerical computation proceeds. Hence, the investigation of the zero-stability
property is necessary.

Definition 3.3: According to Lambert (1973), The LMM is said to be zero - stable if no root of the first

characteristic polynomial o(&) has modulus greater than one, and if every root with modulus one is
simple, where p(¢&) = thoajgj . The investigation carried out on the six difference schemes in

(2.18)-(2.23) revealed that all the roots of the derived schemes are less than or equal to 1; hence the schemes
are zero-stable. Since the consistency and zero-stable of the schemes (2.18)-(2.23) have been established,
then the proposed hybrid block method is convergent, see Lambert (1973) and Fatunla (1988).

Numerical Experiment
In this section, the concern is the application of the schemes derived in section two in block form on some
initial value problems with test problems 4.1.1-4.1.3 and an application problem 4.1.4:

Problems

Problem 4.1.1:
y'=-y; y0)=1, h=010<x<land y(x) = e”
[see Sirisena et al. (1999 and 2004) and Areo et al. (2009 and 2013)]

Problem 4.1.2:
y'=-8(y—x)+1;y(0)=2,h=0.1,0<x<1
y(x) = x+207%
[see Sirisena et al. (1999 and 2004) and Areo et al. (2009 and 2013)]

Problem 4.1.3:
y'=x-y,y(0)=0,h=0.1,0<x<1
y(X)=x+£7-1
[see Sirisena et al. (1999 and 2004) and Areo et al. (2009 and 2013)]

Problem 4.1.4: Considering the discharge valve on a 200 -gallon tank that is full of water opened at time
t=0 and 3 gallons per second flow out. At the same time 2 gallons per second of 1 percent chlorine
mixture begin to enter the tank. Assume that the liquid is being stired so that the concentration of chlorine is

9
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consistent throughout the tank. The task is to determine the concentration of chlorine when the tank is half
full. It takes 100 seconds for this moment to occur, since we lose a gallon per second. If y(t) is the amount

of chlorine in the tank at time t, then the rate chlorine is entering is % gal/sec and it is leaving at the rate

B[L] gal/sec.

whose analytical solution is

1

y(t)=2-—t —2[1—i]3.

100

1000

200t
Thus, the resulting IVP is
W_2 3 Y g<t<i:y0)=0, h=01
dt 100 200-t

[See John L. Van Iwaarden (1985) and Areo et al. (2013)]

RESULTS

The comparison of errors for problems 4.1.1-4.1.4 are shown in the tables below.

Table 1: Comparison of absolute errors for Problem 4.1.1

X Sirisena et al. | Areoetal. (2009) | Areoetal. (2013) Proposed Method
(2004)

0.1 2.00x10°° 3.60x10°%° 0.0 0.0

0.2 2.00x10°° 1.80x1010 0.0 0.0

0.3 1.00x10° 5.80x10%° 0.0 0.0

0.4 2.00x10°° 7.40x1010 0.0 0.0

0.5 1.00x10°° 8.10x10%° 0.0 0.0

0.6 3.00x10° 9.90x1010 1.00x1010 1x1010

0.7 2.00x10°° 9.90x10%° 0.0 0.0

0.8 3.00x10° 1.00x10° 1.00x1010 1 x10%

0.9 3.00x10° 1.10x10°° 0.0 0.0

1.0 3.00x10°° 1.20x10°° 1.00x1010 1 x10%0

Table 2: Comparison of absolute errors for Problem 4.1.2

X Sirisena et al. | Areoetal. (2009) | Areoetal. (2013) Proposed Method
(2004)

0.1 3.60x10* 7.20x10 1.99x10” 5.70x10°

0.2 1.50x10* 6.50x10 1.79x107 5.30x10°

0.3 5.90x10° 4.40x10° 1.20x108 3.00x10°

0.4 1.60x10° 2.60x10 7.23x108 2.20x10°

0.5 4.30x10° 1.50x10® 3.98x108 4.00x10°10

0.6 2.10x10° 8.00x10”7 2.80x108 5.00x1010

0.7 5.70x10” 4.20x107 1.10x108 1.00x101°

0.8 1.60x10° 2.10x10”7 5.30x10° 4.00x10°10

0.9 5.10x10% 1.10x107 2.30x10° 5.00x1010

1.0 2.80x10% 5.30x10® 1.00x10°° 0.0

10
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Table 3: Comparison of absolute errors for Problem 4.1.3

X Sirisena et al. | Areoetal. (2009) | Areo etal. (2013) Proposed Method
(2004)

0.1 2.00x10°° 3.80x10! 0.0 0.0

0.2 2.10x10° 7.80x101! 0.0 0.0

0.3 1.70x10°° 1.00x1010 6.00x1010 6.0 x 10°%0
0.4 0.00 1.30x1010 3.00x101! 3.0x 10
0.5 6.70x10°° 2.10x1010 0.0 0.0

0.6 0.00 1.90x1010 1.00x1010 1.0 x 1010
0.7 1.00x10°° 1.90x1010 0.0 0.0

0.8 0.00 2.20x1010 0.0 0.0

0.9 0.00 2.40x1010 0.0 0.0

1.0 0.00 2.70x1010 1.00x1010 1.0x 1010

Table 4: Comparison of absolute errors for Problem 4.1.4

X Areo et al. (2013) Proposed Method
0.1 0.0 0.0
0.2 0.0 0.0
0.3 2.40x101! 0.0
0.4 2.40x101! 0.0
0.5 2.40x101! 0.0
0.6 3.00x101! 0.0
0.7 3.00x101! 0.0
0.8 3.00x101! 0.0
0.9 3.00x101! 0.0
1.0 3.00x101! 0.0
CONCLUSION

A collocation approach which produces a family of order seven multiderivative schemes has been proposed
for the numerical integration of initial value problems in ordinary differential equations. The errors arising
from Problems 4.1.1-4.1.3 using the proposed method were compared with those obtained by Sirisena et al.
(2004), Areo et I. (2009) and Areo et al. (2013) respectively, who earlier solved the same problems while the
errors arising from Problem 4.1.4 were compared with Areo (2013).

A close look at the tables presented above reveal that the newly proposed method perform better than those
compared with. The method is also desirable by virtue of possessing high order of accuracy.

11
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