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ABSTRACT | Cassava (Manihot Esculenta Crantz) demand by 700 million people and cultivated in 

105 countries between Tropic of Cancer and Tropic of Capricorn within 2300m elevations globally  

for food security and the cultivation impact on biodiversity require biofertilizer to mitigate climate 

challenges, crop sustainable development and regenerative agriculture. Nigeria is the world largest 

producer with a global average yield of 11.80 t/ha, cassava yields can reach 80 t/ha, compared to the 

current world average yield of just 12.8 t/ha. Biofertilizer solves the traceability problem of chemical 

farm inputs, suitability and nutrient use efficiency as an integral function of the rhizosphere 

microbiome via plant microbe interactions for improved soil health quality and crop degradation 

management. Cassava cultivation with biofertilizer will reduce hydrogen cyanide (HCN) levels in  

the crop as an integral bioavailability of soil organic matter and nutrient use efficiency. Plant growth-

promoting rhizobacteria (PGPR) in the biofertilizer will ameliorate plant abiotic stress and bio-control diseases 

management. Easily accessed agrobacterium inoculant in biofertilizer has potential for transgenic cassava 

cultivar development for improved yield and nutrient biofortification. This book chapter encapsulate the case 

studies trilogy research article papers on biofertilizer impacts on soil microbiome during cassava cultivation for 

crop yield, soil health, regenerative agriculture, value chain development, food and nutrition security. 

KEYWORDS | Soil microbiome, Biofertilizer, Inoculant, Cassava, NPK fertilizer, Biocontrol, Soil health  

and quality, Hydrocyanic acids (HCN), PGPR, Value chain development, Transgenic Cassava.
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INTRODUCTION 

The soil microbiome, including bacteria, archaea, fungi, viruses, and other microbial eukaryotes, has 

crucial roles in the biogeochemical cycling of nitrogen (N), the maintenance of soil fertility, and the 

plant nitrogen use efficiency (NUE) in agro-ecosystems (Fierer, 2017). Recent advances in omics-based 

technologies (e.g., metagenomics, meta-transcriptomics, and metaproteomics) have expanded our 

understanding of the soil microbiome and their controls on specific N-cycling processes (Fierer, 2017; 

Thompson et al., 2017; Trivedi et al., 2017). The crop NUE in modern agro-ecosystems is notoriously 

low, as more than 50% of N fertilizer applied is lost to the environment through ammonia volatilization, 

nitrate leaching, and emissions of nitrous oxide (N2O), the third most important greenhouse gas  

(Hu  et al., 2015; Coskun  et al ., 2017). Conventional agricultural practices mainly rely on agronomic 

measures and chemical inputs to improve NUE, which could lead to soil degradation and loss of 

biodiversity, with detrimental consequences for soil health and ecosystem functioning (Hu et al., 2017). 

For example, long-term use of synthetic fertilizers, herbicides, and pesticides can negatively influence 

bacteria and fungi that create organic matter essential to plants. Propelled by re-generative agriculture, 

there are growing interests focused towards the manipulation of the soil microbiome to reduce soil 

erosion, to enhance plant growth and disease resistance in agro- ecosystems, and to promote the 

remediation of heavy metal- contaminated soils (Fierer, 2017; Trivedi et al.,2017). Plants have 

developed intimate relationships with their interacting soil microbiomes and the environment (termed  

as the ‘phytobiome’reported by Leach et al., 2017). Some plant and crop roots (e.g. Fallopia spp. and 

Brachiaria humidicola) can exudate organic compounds to inhibit the ammonia monooxygenase 

(enzyme capable of oxidizing NH3 to NH2OH) and hydroxylamine oxidoreductase (enzyme capable  

of oxidizing NH2OH to NO2) of ammonia oxidizers (Subbarao et al., 2009) or to inhibit the metabolic 

activity of denitrifiers (Bardon et al.,2014). 

 

Screening agricultural crops with similar traits may greatly enhance our ability to improve crop NUE  

by using them directly for in situ microbiome engineering. Emerging microbial biotechnology tools  

are proposed to precisely manipulate the soil microbiome in situ, by adding or withdrawing chemicals 

(Sheth et al., 2016) to regulate Nitrogen (N) transformation processes under various conditions. 

Multidisciplinary approaches, especially genome engineering can contribute to microbiome-based 

biotechnologies to sustainable management of the N cycle. This book chapter encapsulate the case 

studies trilogy papers (Figure 1) on  cassava (Manihot Esculenta Crantz) potential of  the soil 

microbiome impacts (an integral function of the broad spectrum microbial innoculants in the 

biofertilizer production) on the macronutrients and micronutrients bioavailability for the integrated soil 

nutrient management during the cultivation of cassava crop, Figure 1. Cassava is regarded as a food 

security crop in many developing countries, with a potential to provide off-season calories even on low-

nutrient soils (Nweke et al., 2004).The crop is native to tropical regions of South America; but is now a 

staple crop in many African countries (Allem, 2002). The field cassava case study (Igbariam, Eastern-

Nigeria, Africa) of the impacts of biofertilizer on the soil microbiome during cassava cultivation using 

OBD-Biofertilizer (biofertilizer production visit www.academia.edu/video/l BboEl ) applied alone and in 

combination with inorganic fertilizer NPK (15:15:15) to cassava crop yield and growth components; 

integrated soil nutrients management, soil health and quality and ultimately re-generative agriculture. 
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Physicochemical approaches to manipulate the soil microbiome 

Physicochemical agricultural N losses through manipulating the abundance, structure and activities of 

soil N-cycling microorganisms or controlling the amount of N resources available to microorganisms 

(Figure 2). Some practical tools utilized in agro-ecosystems to improve NUE include: (1) use of 

synthetic nitrification inhibitors (microbial OBD-biofertilizer) to inhibit the activity of ammonia 

oxidisers and reduce the loss through N2O emission and nitrate leaching NPK + OBD-Biofertilizer ) 

affirmed by scholars  (Shi, X. et al.,2016) and illustrated by Figure 2; (2) use of urease inhibitors (e.g. 

N-(n-butyl) thiophosphoric triamide (NBPT)) to inhibit the expression of genes encoding ureases that 

catalyze urea hydrolysis (Shi  et al., 2017); (3) manipulation of soil properties (e.g. soil pH, C:N ratio, 

and moisture) by  biofertilizer (Table 3)  application  that enhance the diversity and structure of soil 

microbiomes during cultivation; (4) incorporation of plant residues (biowaste carrier for the inoculants  

broad spectrum biofertilizer to enhance microbial N immobilization and reduce the amount of inorganic 

N available to soil microbes (Fisk  et al.,2015); and (5) integrated nutrient management practices to 

better synchronize N supply and crop N demand and reduce N available to soil microorganisms. 

association (Singh and Trivedi, 2017). 

 

           

Figure 1 | Adapted from Vogel, Hans-Jörg et al., 2018 as a framework for biofertilizer application to the cassava 

cultivation soil system is functional characteristics of the impacts on rhizosphere considered for diagnostic tests of 

‘Biofertilizer rhizosphere holistic soil function’. Where indicated by grey [Paper 1, Otaiku et al., (2019a)] circles 

while the connecting processes are in white [Paper 2, Otaiku et al., (2019b)] and sustainable soil management  

[Paper 3, Otaiku et al., (2020)]. 
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Figure 2 | Adapted from Hu, Hang-Wei and He Ji-Zheng (2018). Schematic overview of the microbiome 

manipulating tools that can be used for managing the nitrogen cycling processes in agro-ecosystems. DNRA, 

dissimilatory nitrate reduction to ammonium; Anammox, anaerobic ammonia oxidation. 

Tools (1) and (2) are direct practices that impact soil microorganisms while the other three tools are 

indirect practices and the focus of this book chapter. The outcomes of these physicochemical 

technologies are variable across soils, primarily owing to their largely unknown impacts on soil 

microorganisms. Long-term use of chemicals has detrimental environmental impacts, resulting in the 

accumulation of residues in fields, loss of beneficial microorganisms, and disruption of the plant and soil 

microbiota (Singh and Trivedi, 2017).The aim of the book chapter was trilogy of three published 

research articles (Figure 1) from doctoral thesis to determine the bio-fertilizer impacts on cassava on 

crop yield and Growth Components; Improved Soil Health and Quality; and Soil Microbiome 

Engineering, Genetic and Sustainable Agroecosystems, Igbariam, Nigeria (Table 11). 

 

CASSAVA (MANIHOT ESCULENTA CRANTZ) 

Cassava (Manihot Esculenta Crantz) is an introduced crop, native of South America (Okigbo, 1980). 

Okigbo (1989) found that crop wastes such as those of legumes, rice and maize increased yield of 

cassava as mulch. However, farmers rarely use chemical fertilizer due to scarcity and cost, hence the 

dependence on cheap organic sources of nutrients. These reasons necessitate research on increasing 

effectiveness of organic manures and suitable rate of application. The effect of digester effluent was 

compared with pig and cattle manure (Weite et al., 1998) and it was found that bio-digester effluent 

gave higher biomers, yield and protein content of cassava. These necessitate the biofertilizer production 

using agriculture wastes inoculated with broad spectrum microorganism accelerated composed in an 
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anaerobic bio digester (biofertilizer production, (www.academia.edu/video/lBboEl). One of the factors 

responsible for low yield is declining soil fertility. In the past, soil fertility has been sustained through 

long fallowing (Agboola and Unamma, 1994). OBD-Biofertilizer production, visit website 

(https://www.youtube.com/watch?v=Hi_OpgVcFcg biofertilizer) from biowaste in anaerobic digester 

inoculated with beneficial microbes that exhibit differing metabolic capabilities (Tables 1 and 2). 

Biofertilizers applied as soil inoculants, multiply in nutrient cycling and benefit crop productivity (Singh 

et al., 2011). Microorganisms inoculated in the biofertilizer production produce microbial enzymes and 

metabolites, which mimic the multiplicity of biocontrol mechanisms, set up by microorganisms (Huang 

and Chen, 2008; Karasuda et al., 2003). This category includes microbial secondary metabolites and 

hydrolytic enzymes as glucanases, proteases, lipases, and chitinases. These molecules can be used alone 

or, better, in combination with NPK chemical fertilizers reducing impacts on the ecosystems (Berini et 

al., 2018). 

Yadav et al., (2000) obtained consistently higher crop yield with NPK fertilizer mixed with organic 

manure over NPK inorganic fertilizer alone, Ano and Emehute (2004) also obtained higher ginger 

rhizome yield with organic manure mixed with inorganic fertilizer over inorganic fertilizer alone. 

Complementary use of organic manure and inorganic fertilizer improves the soil resource base. The 

effect of biofertilizer on cassava microbiome and phytobiome is unknown or under investigation.  

This book chapter reports results application of accelerated OBD-Biofertilizer applied alone and in 

combination with inorganic fertilizer NPK (15:15:15) and its impacts on the cassava crop yield and 

growth components (Figure 1). Also, reviewed literature on crop cultivation constraints, impacts of pests 

and diseases on cassava crop and the implications of application of biofertilizer to the integrated nutrient 

managements of the crop quality and soil health. 

 

Cassava Cultivation Constraints 
Many diseases are caused by pathogens, whose damage symptoms appear on the leaves, stems and 

storage roots (Miskito et al., 2000). The common diseases of cassava are: cassava mosaic disease, 

cassava bacterial blight, cassava anthracnose disease, cassava bud necrosis and root rot. Some of these 

diseases attack the leaves and stems of cassava plants while others attack the storage roots, Tables 6 and 

7 (Olugbenga et al., 2011). Cassava mosaic disease is caused by the African cassava mosaic virus which 

occurs inside the leaves and stems and causes yield reductions of up to 90 percent (IITA, 2008). 

Economical damage by diseases, pests and weeds of cassava is relatively moderate, although white flies 

can be a menace in some regions, if the problem is not identified early, and remedial action not 

implemented in a timely manner (Figures 3 and 4). Correct identification of the pest and an 

understanding of its behaviour, including its most vulnerable stages would provide insights into its 

management. Care must be then taken if pesticide application is contemplated, since there is the 

likelihood of high residual levels remaining in the product after harvest if an inappropriate formulation 

is used. Biopesticides can exert fungicidal, insecticidal, or nematicidal action, a combination of them 

and possibly other auxiliary functions such as bird and mammal repellents or herbicides. According to 

recent classifications (Czaja et al., 2015; Olson, 2015). 

Biocontrol action is due to multiple synergic mechanisms, generally including: i) production of antibiotics 

and other secondary metabolites (e.g., phenazines by Pseudomonas spp., lipopeptides by Bacillus spp., 

https://www.eajournals.org/
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and hydrocyanic acid by Rhizobia); and ii) secretion of lytic and defense enzymes (e.g., chitinases, 

glucanases, peroxidases, polyphenol oxidases, and phenylalanine ammonia lyases produced by 

Trichoderma, Fusarium, Rhizoctonia, Serratia, Streptomyces and Bacillus strains) (Leahy et al., 2014; 

Parnell et al., 2016). The drawback of using living microorganisms is that their efficacy is often 

unpredictable under changing field conditions, and their fitness is reduced by the presence of an indigenous 

microbiota difficult to displace by non-native microorganisms (Neeraja et al., 2010a; Parnell et al.,2016). 

Additionally, the antagonistic interactions occurring in formulations containing more than one microbial 

species limit their potential in integrated pest management strategies (Gadhave et al., 2016;  

Xu et al., 2011). 

REGENERATIVE AGRICULTURE  | CASSAVA 
Organic 3.0 encapsulate regenerative agriculture (RA), refers to a set of agricultural techniques that 

improve soil health by increasing soil organic matter and the carbon content of soil. The critical goal for 

Organic 3.0 is to inform consumers and reconnect health, environment and product quality as essential 

elements of general human well-being as well as of the agri-food system (Rahmann et al., 2017). RA 

seeks to combine the best conventional, organic, and biological farming practices into a system that 

improves productivity while enhancing ecosystem services with different mindset and different 

management strategies. It seeks to address the root cause of production problems rather than simply 

treating the symptoms. RA takes into consideration the environmental and societal implications of our 

food production systems. Conventional agricultural practices of the past half century have produced 

abundant food but have done it at tremendous environmental and socioeconomic cost. These practices 

often relied on ‘mining’ the soil rather than improving it and have led to degraded soil, lost future 

production potential, and shrinking rural communities. RA not only improves soil health, productivity, 

and resilience to weather extremes, raising farm yields and income while strengthening regional food 

security in the face of a changing climate, but can also form part of a region’s broader climate strategy. 

Under improved management, soils have the potential to absorb hundreds of millions of tons of 

atmospheric CO2 more than they do today. 

Why Regenerative Agriculture Biotechnology? 

Cassava cultivation could contribute significantly to climate change adaptation in Africa, based on the 

crop’s wider tolerance range for moisture availability than other staple crops (such as maize, millet, 

sorghum, rice, and beans) Jarvis et al., 2012. Later, it was observed that cassava production will benefit 

immensely from future climate change in the eastern part of Nigeria (Mbanasor et al., 2015). Studies 

have indicated that from 2050 to 2100, the average temperature across Nigeria will increase, with a 

corresponding decrease in rainfall at the central and southern sub-regions [Ogunrinde et al., 2019; Shiru 

et al., 2019a; Shiru et al., 2019b; Adeniyi and Oyekola, 2017]. Therefore, cassava cultivation could 

benefit from the vast lands that will no longer be suitable for cocoa cultivation in the current cocoa belt 

(Schroth et al., 2016) Elsewhere, the dominant influences of soil fertility status, fertilizer application, 

and genotype on cassava yield in the tropics were recently reported (Phanupong, et al.,2015) Aliyu et 

al., 2019;  Biratu et al., 2019 a, b; Biratu et al., 2019a, b; Senkoro,2018) ; Ezui et al. ,2016). Soil organic 

matter (SOM) A refers to plant and animal matter in soil in various stages of decomposition as well as  

the cells and tissues of soil microbes. Biofertilizers application that contain living microorganisms  

is one of the management practices that can help to maintain or increase the content of organic matter 

https://www.eajournals.org/
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and improve soil fertility in arable soils. Bio-fertilizers field application on cassava have not been 

documented especially within the humid tropics and their potential effects on soil properties and 

processes, especially but scholars have affirmed the otential impacts (Mayer et al., 2010; Dinesh et al., 

2010; Khaliqetal.2006; Piotrowskaetal.2012; Wuetal.2005; Zhaoetal, 2005). Acceleration of the 

humification of fresh organic matter that is, introduced into the soil influence of biofertilizers was 

reported by scholars (Valarini et al., 2003; Fatunbi and Ncube, 2009; Piotrowska et al., 2012). The 

application of specially composed  biofertilizer (OBD) is very important in order to accelerate the 

transformation of the biomass [https://www.academia.edu/video/jEepAj]. The positive influence of 

organic matter on soil functionality is sustained (Lal, 2011; Krasowicz et al., 2011). 

The increasing global demand for food can be met by agricultural expansion (e.g. clearing forest land for 

crop production) or intensification (e.g. increasing yields from existing crop and grassland) (Tilman et 

al., 2011). 50 years ago, the dominant form of agricultural development has been intensification with 

low consideration of the environmental effects (Pretty et al., 2018). To counter this, “sustainable 

intensification” is promoted as an approach for increasing food production from existing farmland whilst 

placing less pressure on the environment and without undermining future production (Godfray and 

Garnett, 2014). The approach is goal, rather than means-orientated, with the most appropriate form of 

farming dependent on the context (Garnett et al., 2013). The regenerative organic certification scheme 

builds on USDA’s certified organic standards and has three pillars relating to soil health, animal welfare, 

and social fairness. Years of analysis of the complexity of soil ecosystems has allowed the scientific 

community to understand that microbial communities form the basis of highly fertile as well as carbon-

rich soils. B, C Evidence shows that it is possible for healthy microbial communities to produce sufficient 

nutrients for high crop yields, as well as promote biodiversity on farmland, which acts as a natural pest 

control system. (Sharanaiah et al., 2018). Tillage any form of ploughing or disrupting the soil 

demonstrably leads to the oxidation of soils, damage to mycorrhizal fungi networks and ultimately to 

loss of organic carbon, and therefore of fertility (Zahangir, 2005). The use of chemical inputs of any 

kind is D not consistent with the goals of maintaining E and enhancing soils’ capacities to sustain the 

food system in the long-term (Miller and Krusekopf, 2018), as it requires a transition to no-till systems 

and an elimination of chemical inputs, the implementation of the Regenerative Agriculture paradigm 

throughout regions and corporate supply chains would require a holistic restructuring of the way 

societies produce food. This process has begun with developing sets of practices that need to be 

customized for each specific context in the broad spectrum of farming ecosystems. The adoption of a 

regenerative approach is stimulated by a recognition of input costs that could be saved by restoring 

ecosystem fertilization and irrigation processes (LaCanne and Lundgren, 2018). 

___________________________ 

A. Bot, Alexandra, and JoséBenites. (The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food 

Production. Food and Agriculture Organization of the United Nations, 2005. Library of Congress ISBN, http://www.fao.org/3/a-

a0100e.pdf. 

B. Soilquality.org.au Soil Biological Fertility Fact Sheets http://www.soilquality.org.au/factsheets/soil-biological-fertility.. 

C. “Institute National de la Recherche Agronomique” (INRA). 

D. World Bank, Climate Smart Agriculture. http://www.worldbank.org/en/topic/climate-smart-agriculture. 
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The Global Soil Organic Carbon Map (GSOCmap) is a recent breakthrough by the GSP that will act as a 

“consultative and participatory process involving 110 countries” for measuring the soil-carbon impact of 

agricultural reform practices. F Regenerative agriculture could potentially become the dominant 

paradigm as a strong coalition of actors, including scientists, farmers, consumers, and decision-makers is 

growing at the national and international levels. The Regenerative Agriculture movement advocates for 

the adoption of agroecological practices currently used by millions of smallholder farmers throughout 

the world. C Internationally, RA is promoted by a broad coalition that includes scientists (scientific 

advisory councils like INRA, CGIAR), G governments (notably the French Government), and NGOs, 

including the International Federation of Organic Agriculture Movements (IFOAM), H Via Campesina, 

Nature Conservancy, Oxfam C and Regeneration International. 

 

RATIONALE AND SIGNIFICANCE  

The development of the technology of planting one stake of cassava per hill or stand using 1m x 1m 

spacing, by the National Root Crops Research Institute (NRCRI) Umudike, Nigeria, was a major 

breakthrough in cassava-based farming system practices. This technology encourages the production of 

larger roots, high yield per stand and makes other farm operations such as weeding and fertilizer 

application easy. The reasons advanced for the low adoption was low cassava population, low yield per 

unit area and weed growth in farms. Therefore, farmers are demanding for an increase in the number of 

cassavas to be planted per hill or with little or no chemical pesticides applied during cultivation. Cassava 

yields are compromised by pests such as whiteflies, mites, and weevils, which cause significant crop 

losses through the spread of viral disease and direct damage to plants (Table 6) within the global crop 

cultivation zones (Figure 1.1). Whiteflies are vectors for viral diseases such as cassava mosaic disease 

(CMD) and cassava brown streak disease (CBSD), which can reduce yields by up to 40% (Legg and 

Fauquet, 2004).  Studies shows the enhanced by the production of bioactive substances having similar 

effects as that of growth regulators besides nitrogen fixation through biofertilizer leading to greater dry 

matter production was reported by Ramanandam et al., 2008 and similar findings were reported by 

Subbiah (1994). The higher dry matter production is attributed to the cumulative effect of progressive 

increase in the growth attributes, viz., plant height, stem girth and number of leaves per plant. Similar 

results have been reported earlier in cassava (Ammanullahkhan, 1997). The review on cassava 

microbiome ecology summarizes and discuss data on putative mechanisms of cassava crop resistance  

to environmental challenges via mobilization of a hidden reserve (dormant endophytic inhabitants).  

An endophytic microbiome shaped by extrinsic and intrinsic factors like the microbiome ecology, 

impact on plant functions, bacterial endophytes in plant disease control and the biofertilizer 

characteristics (Tables 6 and 7).  

_________________________________ 

E. OXFAM issue briefing, Building a New Agricultural Future: supporting agro-ecology for people and the planet, April 

2014.https://www.oxfam.org/sites/www.oxfam.org/files/ib-building-new-agricultural-future-agroecology-280414-en.pdf. 

F. Today, 75% of the world’s food is produced by family farms which use very limited amounts of chemical inputs if at all, and whose 

large majority are smaller than one hectare (2.5 acres). http://www.fao.org/news/story/en/ item/260535/icode/ 

G. IFOAM, Organics International at the Regeneration International Conference, 10/06/2015.https://www.ifoam.bio/en/ 

news/2015/06/10/ifoam-organics-international-regeneration-international-conference. 

H. FAO, Soil Organic Carbon Map. http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/ global-soil-organic-

carbon-gsoc-map/en/ 
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The key point of the Book Chapter is that inoculation (biofertilizer) on a plant (cassava) by beneficial 

microbe’s bacteria and fungi will be successful, if it possesses beneficial community members that can 

be activated by specific bioagents or abiotic stressors (Tables 10 and 14). The success of inoculation 

may depend to a large extent on the endophytic microbial community structure and activity, being one 

of the multiple plant-host-genotype- based intrinsic factors that influence plant performance. 

Understanding of the processes that lead to enrichment of specific endophyte species due to 

environmental stress will offer great benefits for crop yield, post-harvest operations, bio-protection,  

soil quality and health. 

Microbiome Ecology 

The rhizosphere is a key habitat documented to contain vast microbial diversity (Egamberdiyeva et al., 

2008; Mendes et al., 2011), where soil functions as the medium in which complex signaling occurs 

among microbes and plants, accomplished by exudates interaction between roots and the 

adhering/surrounding soil and influenced by climatic factors, the rhizosphere in turn impacts the plants 

and microbiota that utilize this habitat as an information highway (Bais et al., 2004). Moving closer into 

proximity with the plant, the next habitat is the rhizoplane, which refers to the surface of the plant 

tissues in contact with the soil (roots and rhizomes). Microbes that can exist in an adherent form to the 

plant tissues are termed epiphytes. Endophytes refer to the microbial genomes located inside plant 

tissues (Bulgarelli et al., 2013). It is important to understand that microbial lifestyles are complex and 

many microorganisms are not restricted in their interactive potential, thus enabling them to exist as 

facultative epiphytes and endophytes as dictated by other biotic and abiotic factors. Cassava cultivation 

using biofertilizer enhance the epiphytes and endophytes microbes in the rhizosphere. Ecosystem 

services are intricately linked to plant functional traits, of which several are likely mediated by microbes 

including soil formation, decomposition of organic matter, nutrient mineralization, and primary 

productivity (De Bello et al., 2010). The impact of the rhizosphere microbiome on plant productivity has 

not escaped those that are familiar with crops, where modulating soybean (Glycine max) cultivars have 

been historically manipulated to enhance yield through alterations to their interactions with various. 

Rhizobium microbial partners (Harris et al., 1985; Heath and Tiffin, 2009; Kiers and Denison, 2008). 

The plant growth promoting activities that many rhizosphere-dwelling prokaryotes provide to plants 

include nitrogen (N2) fixation (James, 2000; Martinez-Romero, 2006), phosphate solubilization, and 

production of plant-growth hormones (Hardoim et al., 2008). Whether from a macro (plant-centric) or  

a micro (microbiome-centric) perspective, the plant microbiome can exert influences on plant trait 

expression through top-down and bottom-up interactions (Figure 2). Microbial exudates comprise much 

of the basis of modern antibiotics and antifungals. The excretion of antimicrobial substances is a 

common feature found in prokaryotic and eukaryotic microorganisms, and only a miniscule fraction of 

these organisms is cultivable (Piel, 2011), making the development of meta-transcriptomics and 

metabolomics research now imperative. In addition to exuding antimicrobials that assist in plant 

immunity, microbes also exude low-molecular-weight effector molecules detectible to plants through 

what are known as pathogen- or microbe-associated molecular patterns in plants that trigger the immune 

response (Boller and He, 2009). 
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Impact on plant functions  

Plants can actively construct the rhizosphere microbiome and that this community by regulating or 

recruited by the plant to serve as protection from pathogens (Bernedsen et al., 2012; Friesen et al., 

2011). An example of this is found in the bacterial production of enzymes that degrade N-acyl-L-

homoserine lactones (AHLs), commonly found among several prokaryotic genera, which inhibit quorum 

sensing. Plants were capable of recruiting beneficial bacteria expressing high levels of AHL-degrading 

enzymes when exposed to a pathogen, thus suppressing virulence gene expression (Reading and 

Sperandio, 2006). Plants also recruit activity within the microbiome specifically to stimulate AHL 

degradation (Teplitski, Robinson and Bauer, 2000).  Microbe like fluorescent pseudomonads, many of 

which are capable of producing the antimicrobials 2, 4-diacetylphloroglucinol (2, 4-DAPG) and 

derivatives of phenazine (Phz). These bacteria are common to the rhizosphere of a diverse array of plant 

species (Mavrodi et al., 2011). Both antimicrobials are broad spectrum and provide protection against a 

wide range of plant pathogens, many of which are fungal (Raaijmakers et al., 2009). 2,4-DAPG and Phz 

derivatives also serve to reduce mineral content in the rhizosphere, perform plant regulatory and 

signaling functions that include alterations to exudate profiles, and play a role in the induction of plant 

systemic resistance (Doornbos et al., 2012; Matilla et al., 2007; Mavrodi et al., 2011).   

The dual growth-promoting traits (i.e., phosphate solubilization and ACC deaminase production (Baig et 

al., 2012); an example of multiplicity of microbial function as a complementary aspect of functional 

redundancy. Plant microbiome is informative about plant health, at both the individual and community 

level (particularly in monoculture crops), where a healthy versus diseased state of the plant community 

can be reflected in the composition of the rhizosphere microbiome (Burdon and Thrall, 2009). PGPR 

stimulate induced systemic resistance (ISR) in plants, marked by priming of jasmonic acid-inducible genes 

in leaves (Van Wees et al., 2008), effectively stimulating immunity conferring resistance to a broad range 

of pathogens (Pineda et al., 2010; Van der Ent et al., 2009; Van Oosten et al., 2008). In turn, plants with 

activated ISR display increased or enhanced defence signaling aboveground (Ahmad et al.,2011) and 

belowground (Neal et al., 2012; Neal and Ton, 2013). The microbiome located inside plant tissues reflects 

the microorganisms living in an endophytic lifestyle (Bulgarelli et al., 2013). Many plant species have 

been shown to harbour endophytes (Compant et al., 2008; Hallmann et al., 1997; James et al., 2002), and 

wild cultivars, including invasive species (Rout and Chrzanowski, 2009).  

Alterations to root architecture have important implications for overall plant health. Take, for an 

example, border cells in roots; increased numbers of border cells conferred increased resistance to 

fungal pathogen infection (Chen et al., 2012), likely due to the function of border cells in extracellular 

trapping of microbes that has been shown to provide a defence for the root tip (Curlango-Rivera et al., 

2013). Influencing plant architecture through enhancing root growth is a primary motivation behind 

mining the microbiome for this Plant Growth Plant trait, which is of interest to agribusiness. Besides 

assisting plants in niche expansion (or invasion spread) through enhanced root and rhizome production, 

the microbiome can impact plant ecology through influences exerted on plant–plant competition 

(Klironomos, 2002), pollination (Cahill et al., 2008), herbivory, and defence (Friesen et al., 2011). 

Extreme environments, such as deserts, are another area where plant microbiome research efforts have 

correlated mechanisms of the microbiome permitting the plant to tolerate drought stress (Kaplan et al., 

2013). Given the complexity of chemical communication capabilities within the microbiome, and  
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phytohormones, the link between microbial mediated ecosystem process of nutrient cycling and plant 

productivity lies embedded in the rhizosphere matrix. The complexities of the defined endophyte 

community structures indicate that they are not random guests in the plant habitat, but potentially play 

essential roles, interacting with the plant host and influencing plant physiology (Gaiero et al., 2013), 

endophytes can significantly affect the physiology of the plant host (Pirttilä et al., 2004; 2005). 

Bacterial Endophytes in Plant Disease Control 

The plant microbiome is currently attracting a lot of research interest due to its ability to buffer plant 

hosts against abiotic and biotic stress, facilitate nutrient uptake and nutrient use efficiency, and promote 

growth (Hardoim et al., 2015; Turner et al., 2013; Santoyo et al., 2016; Gaiero et al., 2013; Brader et 

al., 2014; Truyens et al., 2015; Nair and Padmavathy, 2014); Ma et al., 2011; Iqbal et al., 2017; Blain et 

al., 2017). Endophytic bacteria can be used to improve plant productivity and stress tolerance in the 

absence of pesticides and inorganic fertilizers, and to facilitate phytoremediation heavy metals and 

hydrocarbons, but more research is needed on how to best inoculate plants in field settings (Busby  

et al., 2017). Nigeria is the largest cassava producer in the world (Figure 3) with 8.76 t/ha average 

cassava yield (Figure 4) significantly lower than the global average yield of 11.1 t /ha, and much lower 

than India (34.2 t /ha) FAO (2011) and Laos (32.1 t /ha) (FAO, 2019). Africa, crop production in 

Nigeria is mainly determined by the climatic conditions (Adefisan and Abatan, 2015; Omotosho et al., 

2013). African farmers, was reported 2019 will benefit from climate change by 2100 (Seo et al., 2009) 

specifically with cassava cultivation could contribute significantly to climate change adaptation in 

Africa, based on the crop’s wider tolerance range for moisture availability than other staple crops (such 

as maize, millet, sorghum, rice, and beans). Jarvis et al., 2012. Later, it was observed that cassava 

production will benefit immensely from future climate change in the eastern part of Nigeria (Mbanasor 

et al., 2015).  

Although, studies have indicated that from 2050 to 2100, the average temperature across Nigeria will 

increase, with a corresponding decrease in rainfall at the central and southern sub-regions (Ogunrinde et 

al., 2019; Shiru et al., 2019a; Adeniyi et al., 2017; Abatan et al., 2016; Abiodun et al., 2013). Cassava 

cultivation could benefit from the vast lands that will no longer be suitable for cocoa cultivation in the 

current cocoa belt (Schroth et al., 2016). Dominant influences of soil fertility status, fertilizer application, 

and genotype on cassava yield in the tropics were reported  (Ogunrinde et al., 2019; Shiru et al., 2019ab; 

Adeniyi et al., 2017; Abatan et al., 2016; Abiodun et al., 2013; Aliyu et al., 2019; Biratu et al., 2019; 

Biratu et al., 2018; Senkoro et al.,(2018). Endophytic bacteria can be used to improve plant productivity 

and stress tolerance in the absence of pesticides and inorganic fertilizers, and to facilitate phytoremediation 

heavy metals and hydrocarbons, but more research is needed on how to best inoculate plants in field 

settings (Busby et al., 2017). Endophytes are microorganisms that live within the plants’ tissues without 

causing any damage to the host (Lodewyckx et al., 2002). Entophytes could be classified as fungi, bacteria 

or algae (Schulz and Boyle, 2006). Endophytes primarily assist in promoting the growth of plants that 

they inhabited as shown Figure 5. Facultative endophytes grow outside its host plant. Meanwhile, obligate 

endophytes are dependent on their host plant for their growth and survival (Hardoim et al., 2008). 

Endophytic bacteria are correlated with the enhanced plant growth by the production of hormones that 

increase accessibility of nutrients, such as nitrogen, potassium and phosphorus (Glick, 2012), Table 2. 

While induced disease resistance activities are allied with the abilities to produce secondary metabolites, 
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Figure 3 | Geographic distribution of crop areas, yields and physiological types I and cassava field trial site Agro ecology humid forest J (Igbariam, Anambra 

state, Nigeria). 

While induced disease resistance activities are allied with the abilities to produce secondary metabolites, such as antibiotics or chitinase enzyme, 

which can inhibit growth of plant pathogens and act as bio-control agents (Christina et al., 2013; Wang et al.,2014) Figure 8 below for narrative. 

Endophytic bacteria have the capacity to cope with phytopathogenic fungi with induced systemic resistance (ISR) (Pieterse et al., 2014). Due to their 

beneficial function such as plant growth promotion and disease control, endophytes can be used in the form of bio-formulations (seed treatment, soil 

application and seedling dip) in agriculture (Table 4). Endophytic bacteria can also induce seedling emergence and stimulate plant growth (Chanway, 

1997) under stress conditions (Bent and Chanway, 1998). The genera of Bacillus and Pseudomonas are identified as frequently occurring bacteria in 

agricultural crops (Seghers et al., 2006; Souza et al., 2013). It has been reported that most of Gram-negative endophytes act as agents of biological 

control (Kobayashi and Palumbo, 2000), while among the Gram-positive bacteria, the dominant endophytic species are Bacillus species (Gupta et al., 

2002; Bacon and Hinton, 2007). The root exudates contain that colonize different bacterial genera and they differ normally according to plant species 

(Bisseling et al., 2009)

________________________________ 
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Figure 4 | Global cassava production quantity for 2017, indicating the dominance of Nigeria. (FAOSTAT data was processed in the ArcGIS environment) 

adapted from Akinwumiju et al., 2020. 

The apical root zone having thin-walled surface of root cells includes cell elongation and the root hair zone (zone of active penetration), and the 

basal root zone with small cracks are the preferable sites of bacterial attachment and subsequent entry caused by the emergence of lateral roots 
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(zone of passive penetration) Figure 5. Root colonization or rhizospheric beneficial microorganisms are familiar bio-control agents and plant growth 

promoters. Innumerable compounds such as hydrocyanic acids (HCN), DAPG, phenazines, pyrrolnitrin, enzymes and phytohormones to protect 

plant from toxic effect of fungal pathogens are considered as the significant products to help endophytes to be colonized in rhizosphere (Castro-

Sowinski et al., 2007; Ramette et al., 2011; Jousset et al., 2011), Table 18.
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The apical root zone having thin-walled surface of root cells includes cell elongation and the root 

hair zone (zone of active penetration), and the basal root zone with small cracks are the preferable 

sites of bacterial attachment and subsequent entry caused by the emergence of lateral roots (zone of 

passive penetration) Figure 5. Root colonization or rhizospheric beneficial microorganisms are 

familiar bio-control agents and plant growth promoters. Innumerable compounds such as 

hydrocyanic acids (HCN), DAPG, phenazines, pyrrolnitrin, enzymes and phytohormones to protect 

plant from toxic effect of fungal pathogens are considered as the significant products to help 

endophytes to be colonized in rhizosphere (Castro-Sowinski et al., 2007; Ramette et al., 2011; Jousset 

et al., 2011), Table 18. Bacteria are able to trigger signaling pathways to produce extracellular 

metabolites with higher toxicity for other microorganism led to destruction of higher pathogen, called 

induced systemic resistance (ISR). Myriad of bacteria has been documented for beneficial effects, 
alleviation of several abiotic and biotic stresses. Pseudomonas and Bacillus spp. have been studied 

as potential candidate to provide ISR to plants (Chakraborty et al., 2006), In Table 6, P in the soil in 

lesser quantities (Khan et al., 2006). However, plants are well adapted to uptake of P from low 

concentration soil solution (Jungk, 2001). Therefore, it is presumed that the supply and availability 

of P to the root surface is influenced by the root and microbial processes by PGPR (Figure 9). 

Different mechanisms can be broadly studied under (1) Biofertilization, and (2) Biocontrol of 

pathogens. Biofertilization encompasses: (a) N2Fixation, (b) Siderophore production, (c) P inorganic 

solubilization by rhizobacteria. Biocontrol involves: (a) Antibiosis, (b) Secretion of lytic enzymes, 

and (c) Induction of Systemic Resistance (ISR) of host plant by PGPR, Figure 8 below. 

BIOFERTILIZER  

A key advantage of beneficial microorganisms is to assimilate phosphorus for their own 

requirement, which in turn available as its soluble form in sufficient quantities in soil. 

Pseudomonas, Bacillus, Micrococcus, Flavobacterium, Fusarium, Sclerotium, Aspergillus and 

Penicillium have been reported to be active in the solubilization process (Pindi and Satyanarayana, 

2012). A phosphate-solubilizing bacterial strain Micrococcus sp. has polyvalent properties 

including phosphate solubilization and siderophore production (Dastager et al., 2010). Similarly, 

two fungi Aspergillus fumigatus and A. Niger were isolated from decaying cassava peels were 

found to convert cassava wastes by the semi-solid fermentation technique to phosphate 

biofertilizers (Ogbo, 2010) Burkholderia vietnamiensis, stress tolerant bacteria, produces gluconic 

and 2-ketogluconic acids, which involved in phosphate solubilization. Potassium solubilizing 

microorganisms (KSM) such as genus Aspergillus, Bacillus and Clostridium are found to be 

efficient in potassium solubilization in the soil and mobilize in different crops (Mohammadi et al., 

2012). Mycorrhizal mutualistic symbiosis with plant roots satisfies the plant nutrients demand 

(Kogel et al., 2006) which leads to enhance plant growth and development, and protect plants from 

pathogens attack and environmental stress (Lamabam et al., 2011). Pseudomonas aeruginosa has 

been shown to withstand biotic and abiotic stresses (Pandey et al., 2012). Paul and Nair (2008) 

found that P. fluorescens MSP-393 produces osmolytes and salt-stress induced proteins that 

overcome the negative effects of salt. Microbial inoculants genera in the OBD-Biofertilizer are 

isolated using the growth media in Table 1 from different agro biowaste and inoculated into the 

composted biofertilizer, Table 3. 

Biowaste Recycling to Biofertilizer 

Agriculture biowaste materials composted by anaerobic digester (AD) to biofertilizer 

(https://www.academia.edu/video/lBboEl) and inoculated with broad spectrum inoculants OTAI 

AG® (Tables 1 and 2) and Oso Bio-Degrader (OBD-Plus®) called microbial inoculants. During the 
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anaerobic ingestion process (Figure 6) and see video available for the biofertilizer production, 

Abeokuta, Nigeria. www.youtube.com/watch?v=pG2ODAx3ICY. It might be anticipated that a  

 

measurable increase in the proportion of readily available N would occur in these materials, as a 

result of the digestion process. In addition to nutrient impacts, a number of benefits are claimed to 

accrue as a result of AD, including a reduced risk of odour nuisance and a reduction in viable 

pathogenic organisms (Sood, 2006). Inoculated beneficial microbe’s direct analysis of metabolites 

in situ has been achieved for antibiotic lipopeptides from several Bacillus subtilis and for 

pyrrolnitrin, 2,4-diacetylphloroglucinol and phenazine-1-carboxylic acid from Pseudomonas 

fluorescens strains (Raaijmakers et al., 2012).   

MATERIALS AND METHOD 

OTAI AG® is PGPR and beneficial microbial inocula (Table 4) an easy-to-use and economical 

carrier material (composted) biofertilizer production with industrial standardized process of 

production can be defined (Schmidt, 2005). Biofertilizers price is not the same as composts and 

have been tested as growth media for PGPR (Schmidt, 2005; Vidyarthi et al., 2000). PGPR and/or 

arbuscular mycorrhizal fungi (AMF) (Jeffries et al., 2003) combine inoculation often resulted in 

increased growth and yield, compared to  single inoculation  through  improved  nutrient  uptake 

(Bashan et al., 2004; Belimov et al., 1995) and resultant interaction of bacteria and  AM fungi have 

beneficial functions related to nutrient  uptake, particularly when PGPR (Barea  et al., 2002 ; 

Vassilev et al., 2001) and N2-fixing bacteria (Biro et al., 2000; Secilia and Bagyaraj, 1987) are 

involved. Survival of the PGPR (Tables 3 and 4) is important both during the storage period of the 

bioproduct and after being introduced into the soil (Trzcin´et al.,2001) for solid carriers, powder or 

granules. Standard sizes of the powder material may vary from 75 µm to 0.25 mm (Smith,1992) 

and application methods depend on the kind of crop concerned can be inoculated by broadcasting 

the inoculum over the soil for regenerative agriculture. K 
 

 

Figure 5 | Endophytic bacterial colonization in cassava plants modelled. Bacteria can enter a plant at 

several root zones as indicated above (Adapted   from   Maheshwari and   Annapurna, 2017). Endophytes 

can either remain at the site of entry (indicated in blue) or move deeper inside or occupy the intercellular 

space of the cortex and xylem vessels (indicated in green). Red and yellow represent rhizospheric bacteria 

which are unable to colonize inner plant tissues. 

____________________________________ 
 

K. Regenerative Agriculture       https://www.academia.edu/44877314/Regenerative_Agriculture_4_0_Tool_Box. 
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Table 1. Microbial culture techniques of beneficial microorganisms present in OBD-Biofertilizer.  

 

broadcasting the inoculum over the soil surface, alone or together with seeds, or by in-furrow 

application, seed dressing, or coating; tree crops can be initially inoculated by root dipping or 

seedling inoculation (Muresuet et al., 2003). Chemical analyses: Total Nitrogen Kjeldahl 

procedure (Rhee, 2001; Available P Olsen’s method (Olsen et al., 1954); Available K by Flame 

photometric method (Jackson, 1967); pH (Piper, 1967) Electrical Conductivity by Walkley Black 

method (McLeod, 1973); Micronutrients (Zinc, Iron, copper, Manganese) ppm atomic absorption 

Spectrophotometeric method using DTPA (Diethyl Triamine Penta Acetic Acid) by Lindsay and 

Norvell, 1978. 

Bioferilizer Physico-Chemical Properties 

Otaiku et al., 2019a reported the nutrient content of the OBD-Biofertilizer indicated the followings: 

Macroonutrients: pH in water (5.8); %N (0.95); %P (3.1); % Ca (13.05); %Mg (0.79) %K (0.35); 

ppm Na (40.74); ppm Mn (456.78); ppm Fe (460.01); ppm Cu  (17.47); ppm Zn  (95.5); %Carbon 

(35.68) and C/N ratio (35.56).

 
Table 2. PGPRs Biosulfactants presents in OTAI AG® Inocula (Otaiku et al., 2019a). 

 

 
 

 

 

S.N. Growth media Microbes References

1 Ammonium mineral salt Methylotrophs Holland et al. (2000)

2 Congo red yeast mannitol Rhizobium Yumoto et al. (2002)

3 DSMZ-97, DSMZ-823, DSMZ-1184; OS Halophilic archaea Yadav et al. (2015c)

4 Jensen agar N2-fixing bacteria Jensen (1965)

5 King’s Bagar Pseudomonas sp. Mishra et al. (2009)

6 Luria Bertani agar Endophytic bacteria Ventosa et al. (1982)

7 Nutrient agar Heterotrophic bacteria Ramesh and Lonsane (1987)

8 Potato dextrose agar Fungus Sehgal and Gibbons (1960)

9 Soil extract agar Soil-specific microbes Shivaji et al. (1988)

10 Tryptic soy agar Arthrobacter Shivaji et al. (1989)

N/S Biosurfactants    Microorganisms Economic  importance   References 

1 Rhamnolipids Pseudomonas aeruginosa Antimicrobial Jadhav et al., 2011 

biocontrol properties 

2  Viscosin Pseudomonas  fluorescens, lipopeptides Banat et al., 2010 

3 Ornithine lipids Agrobacterium sp. Bio-emulsifiers Desai and Banat, (1997) 

Pseudomonas sp. Bio-emulsifiers  

Thiobacillus thiooxidans Bio-emulsifiers 

4 Carbohydratel Liipid P.fluorescens Bio-emulsifiers  Nerurka et al., 

5 Protein PA  P.aeruginosa  Bio-emulsifiers  Hisatsuka et al., 1999

6 Whole cell Cyanobacteria Bio-flocculent Levy et al., 1990

7 Surfactin/Iturin  B. subtilis, Antimicrobial Arguella et al., 2009

8 Subtilisin  B. subtilis Antimicrobial properties Sutyak et al., 2008 

9 Aminoacids lipids Bacillus sp Antimicrobial properties Cotter et al., 2005 

10 Lichenysin Enhance oil recovery Yakimov et al., 2009 
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Micronutrients: Molybdenum (Mo) 20 ppm; Boron (B) 30ppm; Copper (Cu) 17.47ppm; 

Manganese (Mn) 456.78 ppm; Zinc (Zn) 95.5 ppm; Iron (Fe) 460.01 ppm; Sodium (Na) 40.74 

ppm. Essential Nutrients: Humic acid 2.1. Beneficial micro-organisms present are in the  

OBD-Biofertilizer (Table 3) :  Azotobacter spp, Clostridium spp, Bacillus spp, Esherichia,  

Rhizobium spp. Fe (iii) reducing Bacteria (Shewanella   putrefaciens), Phosphate Solubilizing 

Fungi (Actnomycetes), Potassium Solubilizing Bacteria (Bacillus mucilaginous), Phosphate 

Solubilizing Bacteria (Rhizobium, Agrobacterium), Sulphur Oxidising Bacteria (Thiobacillus 

thioxidans). 

Materials | Shea cake and Poultry waste (SPW), Swine waste (SW), Wood ash (WA)  

Ratios |   SPW 12: SW 12.5: WA 1  

Percentages | PW 47.06; SW 49.02; WA 3.92 

Microbial Inoculants | OBD-Plus ® and OTAI AG® [Tables 2 and 4] 

The trial was conducted at the National Root Crops Research Institute’s, substation in Igbariam 

in 2012/2013 cropping seasons, Anambra state, Nigeria. The soil was an Ultisol and had a pH in 

water of 5.0, 2.06% organic matter, 0.14% total nitrogen, 5.8 mg /kg Bray 2 P, exchangeable 

calcium, Mg and K of 4.60 cmol/kg, 2.50 cmol/kg and 0.12 cmol/kg respectively. The field was 

slashed ploughed, harrowed and ridged, thereafter plots each measuring 5 m x 5 m were marked 

out. Cassava stakes each measuring about 25 cm were then planted at 1m x 1m spacing on top of 

the ridges on 16th November 2012. Cassava Mosaic Disease (CMD) resistant varieties used was 

from the International Institute of Tropical Agriculture's (IITA) fields. The treatment was 

arranged in a randomized complete block design replicated three times. The treatments were as 

follow: 

1. 300 kg/ha NPK 15:15:15 + 1.0 t/ha   OBD- Biofertilizer 

2. 300 kg/ha NPK 15:15:15 + 2.0 t/ha OBD-Biofertilizer 

3. 300 kg/ha NPK 15:15:15 + 3.0 t/ha   OBD-Biofertilizer 

4. 300 kg/ha NPK 15:15:15 + 4.0 t/ha   OBD-Biofertilizer 

5. 2.0 t/ha OBD-Biofertilizer  

6. 600 kg/ha NPK (15:15:15) 

7. Control (no application). 

The treatments were applied on 9th May, 2013. Harvesting of cassava was carried out in 

November 2013 and the fresh root yield was measured. The data obtained was subjected to 

analysis of variance. Significant treatment means were separated using Fischer’s least significant 

difference (F-LSD) at 5% probability and see Plates 1 and 2 below.  

RESULTS AND DISCUSSION 

The effect of OBD-Biofertilizer applied alone and in combination with inorganic fertilizer on 

cassava root yield is shown in Table 9 and Figure 7. Application of either inorganic fertilizer, 

OBD-Biofertilizer alone, OBD-Biofertilizer in combination with inorganic fertilizer gave 

significantly higher cassava root yield (P< 0.05) than the control (no application). Inorganic 

fertilizer applied at the recommended rate of 600 kg NPK (15:15:15) / ha also gave higher 

cassava root yield than   OBD-Biofertilizer applied either alone or in combination with inorganic 

fertilizer (Figure 7). OBD-Biofertilizer applied at the rate of 4 t/ha mixed with 300 kg NPK 

(15:15:15) /ha gave the highest cassava root yield of 31.2 t/ha which was however not 

significantly higher than 30.0 t/ha obtained with OBD-Biofertilizer applied at the rate of 3 t/ha  
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mixed with 300kg NPK (15:15:15)/ ha (Tables 9.10 and 11).Complementary use of OBD-

Biofertilizer and inorganic fertilizer is therefore more beneficial than OBD-Biofertilizer alone in 

cassava production. This result is in agreement with Ano and Ikwelle (2000) and Mokwunye, 

(1978). Soils of the experimental site and indeed most Nigerian soils are highly weathered and 

have low activity clays (Ano, 1990) and therefore require application of soil amendment for high 

crop yield to be obtained. This explains why inorganic fertilizer NPK 15:15:15 applied at the 

recommended rate of 600 kg/ha or inorganic fertilizer applied at 300 kg/ha mixed with OBD-

Biofertilizer gave significantly higher yield than the control, Figure 7.  

Biofertilizer - Mechanism of action 

The absence of a population of degrading microorganisms can be overcome by the inoculation 

of the plant rhizosphere with pollutant degrading strains and biosulfactants (Tables 1 and 2). 

This approach successful in reducing the levels of benzene, ethylene, toluene xylenes, 

hydrocarbons, polychlorinated biphenyls and pesticides in polluted environments (Johanson et 

al., 2004; Yousaf et al., 2010a; Germaine et al.,2006). The rhizosphere is defined as the volume 

of the soil over which roots have influence, and which is shared with soil bacteria. Plants release 

exudates in the rhizosphere likely to serve as carbon source for microbes (Gregory, 2006; Olson 

et al., 2003). Consequently, rhizosphere microbes can promote plant health by stimulating root 

growth via production of plant growth regulators, enhance mineral and water uptake. Some 

bacteria, especially fluorescent pseudomonads, produce siderophores that have very high 

affinities for iron as compared to fungal siderophores (O’Sullivan and Gara,1992) and can 

sequester this limited resource from other microflora thereby preventing their growth 

(Kuc,1995). Earlier reports have demonstrated the importance of P. fluorescens siderophores in 

disease suppression (Costa and Loper, 1994; Leong and Expert, 1989) was illuminated in 

Figures 6 and 7. 

However, many endophytic bacteria are facultative plant colonizers and have to compete well in 

the rhizosphere before entering the plant (Compant et al., 2010) and might be therefore equipped 

with a rich arsenal of metabolites involved in defense as well as in interaction with the plant. Many  

bacteria with the capacity of colonizing plants utilize the nutrient niche of root surfaces in the 

rhizosphere and most of them might even actively switch from root  surface to endophytic 

lifestyles (Rosenblueth and Martinez-Romero, 2006 ; Compant  et al., 2010).These bacteria 

comprise several well characterized species of Bacillus and Pseudomonas and a number of 

metabolites, particularly  lipopeptides synthesized by non-ribosomal  peptide synthesases, have 

been described to be important for rhizosphere bacteria for antibiosis and for inducing plant  

defense mechanisms (Figure 9). 

 
 

Figure 6 | Anaerobic digestion is a multi-stage process, watch video biofertilizer production | 

                 https://www.youtube.com/watch?v=pG2ODAx3ICY). 

                 https://www.academia.edu/video/jEe
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Table 3.  Biofertilizer characteristic as integrated nutrient management during crop cultivation reported by Otaiku et al., 2019b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/S Characterization Definition Mechanisms Crops 

Application 

References 

1. 

  

  

  

  

  

Biofertilizer 

  

  

  

  

  

 A substance which contains live 

microorganisms which, when 

applied on the seed, plant surface 

or the soil, colonizes the 

rhizosphere or the interior of the 

plant and promotes growth through 

increased supply or availability of 

primary nutrients for the host plant 

a. Biological nitrogen 

fixation. 

b. Utilization of insoluble 

forms of phosphorus.  

  

  

  

Tubers, 

Plantain, and  

Horticulture, 

  

  

Fuentes-Ramírez and  

Caballero-Mellado, 2006 

  

  

  

2. 

  

  

  

  

Phytostimulator  

  

  

  

  

Microorganism with the ability to 

produce or change the 

concentration of growth regulators 

such as indole acetic acid, 

gibberellic acid, cytokinins and 

ethylene. 

a. Production of 

phytohormones (auxins, 

cytokinins and gibberelins).  

b. Decreased ethylene 

concentration (in the 

interior of the plant)  

  

  

  

  

  

  

Lugtenberg et al., 2002; 

Somers et al., 2004. 

  

  

  

3. 

  

  

  

  

  

  

Biopesticide or 

Bio-control agent  

  

  

  

  

  

 

 

 

Microorganisms that promote plant 

growth through the control of 

phytopathogenic agents, mainly for 

the production of antibiotics and 

antifungal metabolites.  

  

  

  

a. Production of antibiotics 

(siderophores,  

HCN, antifungal 

metabolites)  

b. Production of enzymes 

that degrade the 

cellular wall of the fungi  

c. Competitive exclusion 

d. Acquired and Induced 

systemic resistance 

  

  

  

  

  

  

  

  

Vessey, 2003;  

Somers et al., 2004; 

Chandler et al., 2008.  
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  Table 4. OTAI AG®   Inoculant Characteristics of the PGPRs | Microbial Metabolites Processes related to Plant Nutrient in Biofertilizer. 

 

 

Biofertilizer characteristics (Table 3) and biosulfactants (Table 2) applied in the filed cassava cultivation requires no chemical pesticide. This was as a result of might be cassava plant-associated 

lifestyle requires adaptation to several niches, in which different metabolites act as signals for interaction (communication) with the plant and host specific plants nutrient and crop protection. Rhizobium 

and Bacillus were found to synthesize indole acetic acid (IAA) at different cultural conditions such as pH, temperature and in the presence of agro waste as substrate (Sudha et al., 2012).                  

    

N/S Genera Microbe Species Contribution Disease Biocontrol Crops Metabolites References 

A Bacteria Agrobacterium increased the NO3 and K uptake Fusarium solan Potato antimicrobial metabolites like siderophores, Idris et al., 2007; 

Azotobacter sp consequently, the shoot and root Botrytis cinerea Beans ,tomato antibiotics, cyanides, fungal cell-wall-degrading enzymes Lugtenberg and Kamilova,2009

Bacillus sp  dry weights by 22 to 33 percent and F. oxysporum  and gaseous products including ammonia . Bertrand et al. 2004

Pseudomonas sp. 6 to 21 percent, respectively Alternaria spp Roots, leaves Phenazines, pyrrolnitrin, pyoluteorin Srivastava and Shalini, 2008

Rhizobium sp Sclerotium spp rstop on leaves, oot rot and stem rot and cyclic lipopeptides like viscosinamide.

Streptomyces sp Colletotrichum lindemuthianum Beans Pseudobactin and pyoverdin. Hillel, 2005

Enterobacter Pyoverdine, pyochelin and its precursor salicylic acid

chitinase and laminase .

B. Bacteria Pseudomonus putida Denitrification, methanogenesis, Hydrocarbon Pollutants biological remediation Oxygenease and peroxidases Prescott et al.  2002  

sulfidogenesis diseases and as [ Benzene, anthracene, synoptic interaction of fermentative and pseudomicelle formation Glazer and Nikaido  2007  

therapeutic agents hydrocarbons, PCBs ] acetogenic bacteria, with methnogens or Kapley et al. 1999  

Pseudomonas aerogenosa Degrade hydrolysable tannins, Agricultural/agro-industrial wastes mineralization by amphipathic molecules Plasmids ,glycolipids, phospholipids, lipoproteins Bhatta et al., 2012 ; Nitiema et al., 2010, 

Pseudomonas fluorescens diseases and as therapeutic agents Antimicrobial activity Decrease  surface and interfacial tension lipopeptides and polymeric compounds Ray, 1994; Hamzah et al., 2010

Biofouling degradation Decrease surface and interfacial tension Reduction of interfacial tension Chaillan et al., 2004 

Antiviral activity Rhamnolipid  Bhatia and Ichhpujani, 2005

Bacillus sp Bacillus cereus Aromatics, long chain alkanes, Sulphate reducers Plasmids , glycolipids, phospholipids, lipoproteins Cybulski et al. 2003 ; Hamzah et  al., 2013

phenol, cresol . Cybulski et al.  2003  

Azotobacter sp Aromatics Chatterjee et al. 2008   

Mycobacterium sp Aromatics, branched hydrocarbons Jogdand ,1995 

benzene, cycloparaffins Sunggyu,  1995 ; Stanier et al., 1986

Streptomyces sp phenoxyacetate, halogenated Jogdand  1995 , Kuiperet al.  2004

hydrocarbon , diazinon Rockne and Reddy 2003, Schlegel, 1995

Streptococci  sp Degrade the most recalcitrant Bioaccumulation of heavy metals Mineralization Beta-oxidation pathway Gadd, 1986; 

Aspergillus species Bioaccumulation of heavy metals Mineralization Beta-oxidation pathway Gadd, 1986
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Ethylene, unlike other phytohormones, is responsible for the inhibition of growth of dicot plants (Ansari 

et al., 2013). It was found by Glick et al., 1998 that, PGPR could enhance the growth of plant by 

suppressing the expression of ethylene. Interestingly, a model was suggested in which it was shown that 

ethylene synthesis from 1-aminocyclopropane-1-carboxylate (ACC), an immediate precursor of 

ethylene, which is hydrolyzed by bacterial ACC- deaminase enzyme in the need of nitrogen and carbon 

source is also one of the mechanisms of induction of conditions suitable for growth, Figure 9. For plant-

associated microorganisms introduced as bio-control agents into the rhizosphere or phyllosphere, the 

population of the microbial bio-control agent declines to background levels (Figure 8) when the 

supporting plant dies, and it must be applied again with the next planting of that crop with the graphic 

narrative in Plates 1 and 2 respectively. 

 Diseases and Pests of Cassava  
Cassava anthracnose disease is caused by fungus which occurs on the surface of cassava stems and 

leaves (Alvarez et al., 2012) and appears as cankers (sores) on the stems and bases of leaf petioles, 

Tables 6 and 7. Cankers weaken the petioles so that the leaf droops downwards and wilts (Yaninek et 

al., 2000). The wilted leaves die and fall causing defoliation and shoot tip die-back or complete death 

of the shoot. Soft parts of cassava stems become twisted under severe attack by the disease. The 

disease usually starts at the beginning of the rains and worsens as the wet season progresses (Alvarez 

et al., 2012). Cassava bacterial blight, Leaf spot diseases, Cassava brown streak disease, Cassava root 

rot diseases, cassava mealybug. The cassava green mite Table 7. The treatment of the cassava disease 

and pests by disease suppression bio control broad spectrum microbial PGPR (Table 4) inoculants in 

the biofertilizer formulation with external validity of their efficacy by applied field studies, Table 9 

Microorganisms affecting stress tolerance 

Bacteria with the potential to act as biostimulants (Table 2) have been isolated from a number of 

ecosystems with saline, alkaline, acidic, and arid soils. These bacteria belong to several genera such as 

Rhizobium, Bradyrhizobium, Azotobacter, Azospirillum, Pseudomonas, and Bacillus (Tables 12 and 

15 respectively). Members of these genera have developed strategies to adapt and thrive under adverse 

conditions (Selvakumar et al., 2009; Upadhyay et al., 2009). Amongst these adaptations, alterations to 

the composition of the cell wall and the ability to accumulate high concentrations of soluble solutes 

are common. These allow for enhanced water retention and increased tolerance to osmotic and ionic 

stress. Cell wall composition is altered through enrichment for exopolysaccharides (EPS) and 

lipopolysaccharide–proteins and polysaccharide–lipids which form a protective biofilm on the root 

surface (Sandhya et al., 2009; Zahran, 1999). Plant growth-promoting rhizobacteria (PGPR) 

inoculated (Figure 10) soils can ameliorate plant abiotic stress responses and narrated in details in 

Figure 9 below. ARATI Biopesticide * microbial consortium strains is the diverse range of modes of 

action including antibiotic production, cell wall-degrading enzymes, biosurfactants, and volatiles and 

also induces systematic resistance in plants.The bacterial isolates inhibit the growth of pathogen 

through different mechanisms like by secreting antibiotics, toxins, and surface-active compounds 

(biosurfactants), by competition of minerals, and by secreting cell wall-degrading enzyme like 

chitinase and ß-1, 3-glucanase (Kumar, 2015a). 
 

____________________________________ 

   
*ARATI Biopesticide 
https://www.academia.edu/41445902/ARATI_Biopesticide_Microbial_Granular_and_Liquid 
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 Table 5. Effect of OBD - Biofertilizer applied alone and in combination with inorganic fertilizer on  

 cassava root yield.

 

     
 

 

Figure 7 | Field application yield of application of biofertilizer and complementary use of NPK (15:15:15) 

    reported Otaiku et al., 2019a. 

 

Growth, Yield and Root Quality | Biofertilizer  

Biofertilizer facilitate the below-ground biological activity of earthworms, bacteria and fungi, and 

supply a wide range of nutrients, including secondary and micro-nutrients (Tables 16-17). Adoa 

(2009, Susan et al., 2005 reported highest plant height with the application of poultry manure on 

Nkabom and IFAD cassava varieties.  Adjei-Nsiah and Issaka (2013) observed that average fresh 

tuber yield increase from 13.7 t/ha without amendment to 23.7 t/ha with application of 4 t/ha poultry 

manure and compared with Table 4 where biofertilizer application at 5t/ha yield 16 t/ha and control 

yield 12 t/ha (Figure 7) due to the impacts of the beneficial microorganisms, Table 10  and Figure 10 

shows that biofertilizer promote  the growth of stems and leaves of cassava, increase the chlorophyll 

content and the photosynthesis of leaves and improve the physiological metabolism of cassava  

(Luo et al., 2008). The period of maximum rate of dry matter partitioning depends on genotype-by-

environmental interaction (Fregence et al., 1994). Canopy spread in cassava ensures large surface 

solar interception for photosynthesis (Lebot, 2009). Nutrient supplied by poultry manure enhances 

increase in plant height due to increase in cell elongation of plant tissues as a result of steady release 

and mineralization of nutrients, see Tables 8 and 9 (Sharma and Govil, 1988; Christopher et al., 2007). 

S/N Treatments Cassava Root Yield (t/ha)

1 300 kg/ha NPK 15:15:15 +  1.0 t/ha OBD-Biofertilizer 20.5

2 300 kg/ha NPK 15:15:15 +  2.0  t/ha OBD-Biofertilizer 22

3 300 kg/ha NPK 15:15:15 +  3.0  t/ha OBD-Biofertilizer 30

4 300 kg/ha NPK 15:15:15 +  4.0 t/ha OBD-Biofertilizer 31.2

5 5.0 t/ha OBD-Biofertilizer 16

6 600 kg/ha NPK (15:15:15) 35.6

7 Control (no application) 12

 F-LSD(0.05) 3
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Figure 8 | Schematic overview showing the different types of plant-endophyte interactions leading to the 

synthesis of metabolites, which are in many cases not produced by the macro- or micro symbiont alone or 

in different quantities. Furthermore, the different known functions of endophyte-associated metabolites are 

presented, adapted from Sessitsch et al., 2014. 

 

 
 
Figure 9 |  Mechanism of actions implemented by bio-control agents for management of plant diseases 
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     adapted from Weller, 1984; Cook et al., 1991. Otaiku et al., 2019b. 

 

 

 

    

   
                                   

Figure 10 | Emphasized on the mechanisms of action of PGPRs on cassava crop impacts on integrated crop 

management adapted from Maheshwari, 2011, Otaiku  et al., 2019.

Amanullah et al., 2006; Parkes et al., 2012 observed that the number of roots per plant was 

significantly influenced by organic fertilizer treatment steady availability of nutrients throughout the 

crop growth period favorable changes in soil, such as loose and friable soil conditions, enabling better 

root formation (Figure 10) and mode of action Figure 9. An increase in the number of storage roots 

per plant in response to organic fertilizer application has been reported by Kasele (1980) and Pellet 

and El-Sharkawy (1997). Leo and Kabambe (2014), observed a significant increase in number of 

roots per plant, and tuber diameter having a positive correlation with fertilizer treatment. Manure 

application has resulted in higher root yields of cassava (Wilson and Dufour, 2002; Agbaje and 

Akinlosotu, 2004; Issaka et al., 2007; Ojeniyi et al., 2012). Manure application enhances the cooking 

quality (mealiness) of cassava (Adoa, 2009). Various observations have been made of a positive 

correlation between dry matter content and cooking quality of cassava. (Safo-Kantanka and Asare, 

1993; Safo-Kantanka and Owusu Nipa, 1992). 

Biofertilizer and Inorganic fertilizer  

The use of mineral fertilizer in combination with poultry manure has shown an increase yield as 

much as 60 t/ha of cassava roots (CSIR- AGRA, 2012). The fertilizers supplied the bulk of the 

macronutrients needed by the plants, while the  organic sources provide secondary and 

micronutrients which are only needed in very small quantities and improve the soil’s physical 

conditions (FAO, 2012;  Ojeniyi et al., 2012) as confirmed in the Table 4 and Figure 7 where 

treatments with 600 kg/ha NPK 15:15:15 had a yield of 35.6 t/ha and 300 kg/ha NPK 15:15:15  + 3 

t/ha  OBD-Biofertilizer had a yield of 30 t/ha using Fischer’s least significant difference (F-LSD) at 

5% probability  due to the impacts of microbial metabolic processes related to Plant nutrition in the  
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biofertilizer (Table 10).Nutrients contained in organic manures are released more slowly and are 

stored for a longer  time in the soil, thereby ensuring a long residual effect (Tisdale et al., 1993).  

A combined use will increase synchrony and reduce losses by converting inorganic N into organic 

forms (Kramer et al., 2002). 

 

The resultant impacts are integrated nutrient management programme with increase cassava yield 

through improving soil productivity, higher fertilizer use efficiency, reduces the environmental 

problems that may arise from the use of sole inorganic fertilizers and improves the microbial 

properties of the soil and sustain maximum crop productivity and   profitability (Belay et al., 2001; 

John et al., 2004; Ayeni, 2008; Ayoola and Makinde, 2007; Santhi and Selvakumari, 2000).  

Endophytes are also of special interest for their high number of microbial niches and environments 

they may inhabit and provide therefore a high potential as a less exploited resource. In Table 13, 

AGPase, ADP-glucose pyrophosphorylase; bar, bialaphos resistance gene; GAP, beta-glucuronidase 

analysis positive; hpt, hygromycin phosphotransferase gene; ipt, isopentenyl transferase gene; luc, 

luciferase gene; NAP, Northern analysis positive; nptII, neomycin phosphotransferase II gene; pat, 

phosphinothricin acetyl transferase gene; pmi phosphomannose isomerase gene; RAP, reverse 

transcription–polymerase chain reaction analysis positive; SAP, Southern analysis positive; SE, 

somatic embryogenesis; SO, shoot organogenesis; TGE, transient gene expression; uidA, beta-D-

glucuronidase gene; uidAint, uidA with intron; WAP, Western analysis positive. 

SIGNIFICANCE OF BIOFERTILIZER ON CASSAVA CULTIVATION 

Alves (2002) stated that cassava was a subsistence crop, grown by resource poor, small-holder 

farmers, who plant it preferably as an intercrop to reduce the risk of crop failure, while maximizing 

returns to land and labour. Cassava is also thought to require less labour than other crops and to be 

grown without inputs (Leihner, 2002). There is the need to take advantage of less labour cost and 

apply recommended fertilizers to increase crop yield, without necessarily increasing income to 

farmers and improves soil health and yield (Table 10). Cassava is frequently cultivated on marginal 

soils (Dixon et al., 2002). Hillocks (2002), suggested that the observed increase in acreage is related 

to declining soil fertility levels in Africa (Figures 2 and 3). According to FAO (2006), average 

cassava yields in Africa have gradually increased from 6 to 10 t/ha over the past five decades. At 

present, the average African farmer harvests approximately 20% less cassava per hectare than the 

world average 12.2 t/ha due to no or low fertilizer inputs. 

There is the need to apply supplementary nutrients for sustainable crop production (Asare et al., 2009) 

and see Tables 16, 17 and 18. Howler (1990) earlier stated that large bulk of foliage are created by 

the action of nitrogen and consequently an extensive assimilating area, a prerequisite for the good 

development of the roots (Figure 5, Tables 3 and 4). The trend in number of roots per plant is 

attributed to the observation that manure promotes (Table 9) the photosynthetic organs in the plant to 

produce and make available more assimilates to the root and increase the yield of cassava (Zhongyong 

et al., 2006; Kasele, 1980; Pellet and El-Sharkawy,1997). The cassava crop plants inoculated 

beneficial microorganisms significantly improve plant growth based (Figure 7) microorganisms in 

the biofertilizer inoculated (Table 17) to elaborate mechanisms of action (Figure 9 and Table 16). In 

Figure 5, bacteria (orange) and fungi (purple), can colonize the internal tissues of the plant (middle 

panel). Once inside the plant, the endophytic bacteria and fungi interact intimately with the plant cells 

and with surrounding microorganisms (large panel), Figure 12. Table 20. Transgenic cassava cultivars 

reported since 2010 for which genes expressing traits of interest for producers and/or consumers, 

other than marker and selectable genes, have been introduced. The Genetic Transformation Platform 
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at CIAT used E. adhaerens strain OV14 with plasmid pCAMBIA5105 to transform cassava cv. 

60444, based on the protocol reported by Zúñiga-Soto et al. (2015) for rice. Three transgenic 

independent lines were confirmed by Southern blot as having one insert (two lines) or four copies of 

the T-DNA (Figure 15) and adapted from Chavarriaga-Aguirre et al., 2016. 
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Table 6. Diseases and Pests of Cassava cultivation. 

 

The largest number of Cassava diseases is found in  Sub-Saharan  Africa,  South Asia, Latin America and the Caribbean

N/S Crops Components Disease Infection Pictures PGPR + Fungi Treatments  Etcs Biofertilizer Impacts References 

1 Leaves and stems Bacterial blight Bacillibactin Paenibacillus Destroyed after root harvest Alvarez et al., 2012 ; Singh  et al., 2009

Diffusible metabolites as elicitors P. polymyxa yield losses of 20 to 100 % IITA, 2004 ; Phi  et al., 2010; Wen etal., 2011

Viruses Fungicides and insecticides FAO, 2012 ; Kumar  el al., 2016

Integrated Nutrient Management 

Giberellin (GA) production OBD-Biofertilizer Enhancing seed germination  rate Goswami et al., 2016

Insecticidal toxins Bacillus, Pusedomonas, Insecticidal Protein Production Pechy­Tarr et al. 2013 ; Roh et al., 2007

Pseudomonas and Bacillus species PGPRs Biocontrol  agent  called  lipopeptide  (LP)   De Bruijn et al. ,2007; Raaijmakers et al., 2010

 bio-surfactantsFacilitate root colonization Bais et al., 2004 ; Khabbaz  et al.,2015 

        P1   |     P3     |    P3

2 Stems / bases of leaf petioles Anthracnose disease Volatile organic compounds (VOCs) PGPRs Leaf droops downwards and wilts Farag  et al., 2013 ; Von Der Weid et al., 2005

A Antimicrobials  by Paenibacillus Defoliation and shoot tip die-back Yaninek et al., 2000

P. polymyxa Microbial inhibiting agents Abriouel et al, 2011 ; Phi et al., 2010  

ISR against pathogenic bacteria Indole acetic acid production Lee et al., 2004 ; Lee  et al., 2012

      P1| P2 |P3|  P4 

B

Bacilius subtilis  PGPRs PGPRs   rhizobacteriamediated ISR Choudhary & Johri , 2008 ; Zhao et al., 2007

Antifungal and  antibacterial metabolites Sessitsch et al., 2002a ;  Sturz et al., 2000

Phosphate solubilisation Wakelin et al., 2004

 Supply of essential vitamins to plants Pirttila et al.,2004

Integrated Nutrient Management Trichoderma sp OBD-Biofertilizer Microbes within the rhizosphere modify Tucci et al., 2011

Biofertilizer field  application P.Fluorescens PGPRs  modify root exudate composition Enhance growth 11ta 2008 ; Hastuti et al., 2012

induce systemic resistance to subsequent pathogen attack FAO, 2013

Phytohormones used in plant defense, ijasmonic acid, ethylene,  

3 Leaf Leaf spot diseases Trichoderma Sp  and salicylic acid,   Infected  leaves become yellow, Kumar and Legg, 2009 ; Kalita et al., 2012

White leaf spot, brown P.Fluorescens (for Vector) dry and die prematurely FAO, 2013 ; Hastuti et al., 2012 

leaf spot, and leaf blight Bacillus Subtilis Spots sometimes have purplish borders IITA, 2008 ; Sivakumar et al., 2007

Yaninek et al., 2000

Integrated Nutrient Management Pseudomonas antibiotics likes: OBD-Biofertilizer Bacterial ureases   can control/kill  the insect host Salvadori et al., 2012 ; Nakkeeran  et al., 2006

2,4-diacetylphloroglucinol (DAPG Pseudomonas genus Produce antibiotics  kill the growth of target pathogen Glick et al., 2007 ; Santoyo et al.,2012

Pyoluteorin  (Plt) ; pyrrolnitrin (Pm) PGPRs Antibiosis relies on the secretion of  pathogenic molecules Glick , 1995 ; Ahmad  et  al. , 2008

phenazine-1-carboxylic acid (PCA)  Antibiotic  has  antifungal,  antibacterial Raaijmakers et al., 2002 ; Cronin et al., 1997

Protein-type (bacteriocins) and  antihelmintic   properties Loper and Gross, 2007; Velusamy et al.,2006

Hydrogen cyanide (HCN) Thomashow and Weller ,1988

4 Leaf Brown streak disease Plant plasticity PGPRs  Brown streak disease appears on the leaves Miskito et al., 2000 ; Hillocks, 2002

( BSD) Bacilius subtilis stems and storage roots of  cassava plants. Goh et al., 2013 Zhao et al., 2007

Pseudomonas sp Resistance to fungal pathogen infection Chen et al,, 2012; Vasudvan et al., 2002

Cassava Mosaic Disease-resistant damages Mbanzibwa et al., 2011 ; Maruthi et al. ,2005

cultivars. harvest quality Navas-Castillo et al., 2011 ; Omongo et al., 2012

Integrated Nutrient Management Plant antioxidant system PGPRs Endophyte Degrade organic pollutants Viñaset al.,2005, Taghavi et al.,2011

Pseudomonas Secondary metabolites for plant defense and communication Kirby and Keasling, 2009

Table 6.  Diseases and Pests of Cassava 
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5 Root Root rot diseases Exopolysaccharides (EPS) PGPRs leaves on cassava plants  affected by root rot disease turn brown, IITA, 2008  ; FAO, 2013

lipopolysaccharide–proteins Defence for the root tip Curlango-Rivera et al., 2013

Polysaccharide–lipids Protective biofilm on the root surface Zahran , 1999 ; Morris and Djordjevic, 2006

Plant root architecture Wilt and the plant appears scorched. Olugbenga et al., 2011

Post-harvest control Allard  et al., 2014

Integrated Nutrient Management Siderophore Production OBD-Biofertilizer Catalyst in enzymatic processes, oxygen metabolism, Aguado-Santacruz et al., 2012

Plasticity in a given environment PGPRs  electron transfer and DNA and RNA syntheses Friesen et al., 2011, Spaepen,  et al.,  2008

Rhizosphere microbiome Function in root disease suppression Martinez-Viveros et al. 2010; Neilands 1995

Plant root architecture Competitive  fitness  of  plant  growth-promoting Barton and Abadia 2006 ;Weber, 2005

Phytobiome /Microbiome Sequester iron and forms complexes with other essential elements, Bellenger  et al., 2008 ; Braud et al., 2009a,  b

Albrecht-Gary and Crumbliss  1998

 Burdon and Thrall, 2009

6 Pests  : Stems and leaves Mealybug Apoanagyrus (Epidinocarsis) lopezi Reduces the lengths of the  internodes and causes the leaves  LoÈ hr  et al., 1990; Pieterse  et al., 2014

Phenacoccus manihoti Effective parasitoids to clump together into ’bunchy tops’ Mavrodi et al., 2011 ; Sang  el  al., 2014

Reduce leaf and root yield, sometimes by as much as 80 % Antonopoulos  et al., 2008 ;  Bellotti et al., 2012

 Yield loss of 60 percent of the  roots and leaves 100 percent Tjamos  et al., 2005 ; Gkizi el al., 2016

100 percent of the leaves. Neuenschwander , 2003

Integrated Nutrient Management Hydrogen Cyanide Production OBD-Biofertilizer biocontrol of certain plant pathogens Martinez-Viveros et al. , 2010 ; Gupta et al., 2015

hcnAB genes   detecting PGPRs Pseudomonas  strains producing antibiotic 2,4-DAPG Haas and Defago 2005 ; Svercel et al. , 2007

 HCN-producing  pseudomonas HCN is also involved in metal sequestration Wongfun et al. 2013 ; Rijavec and Lapanje 2016

Bacterial volatile compounds  (BVCs) Trigger plant growth and immunity Chung et al., 2016 , Mavrodi et al., 2011

Pathogen suppression Does not require any established  physical contact Ortfz-Castro  et al. 2009

Paenibacillus kill larvae of pest insects to trigger growth response .(Paenibacillus).  Sharma  et al., 2013 ; Neung et al., 2014

 BVCs such as 2,3-butanediol and acetoin accelerate Audrain et al. , 2015 ; Ryu et al. , 2003

 plant growth and induce systemic resistance.

BVC which  strikes the plant's physiology, growth and defence D'Alessandro et al. ,2014

Trait plant hormone signalling Use natural enemies such as predators, parasitoids . Jang  et al.,  2008

and parasites e.g .ladybirds. FAO, 2013

7A Pests : Green mite  (Leaves) Mononychellus tanajoa Severe  mite attack can result in 13 to 80 % loss in cassava yield Alvarez et al., 2012

Lowland areas with a prolonged dry season. Olugbenga et al., 2011

Heavily attacked leaves become stunted and deformed. 

Pest causes tiny yellow chlorotic leaf spots, 

the size of pin pricks, on the upper leaf surfaces.

Integrated Nutrient Management Trait  plant hormone signalling OBD- Biofertilizer Plant systemic resistance Mendes et al., 2011; Hu et al., 2003  

PGPRs

B Pests:White flies (Leaves) Aleurodicus dispersus Genes conferring resistance to CMD Akano, 2001; Okogbenin et al., 2012

Spiraling white  flies Cultivars resistance to Cassava BSD Herbivory, and defence Friesen et al., 2011 ; Zhang,  2005; 

Develop varieties resistant to both Damage cassava by sucking sap from the leaves . Paterson et al., 1995

whitefly and viruses. They secrete large amounts of honeydew that  supports Patil, 2011

Genotypes that show resistance the growth of black  sooty mould on the plant, Legg et al., 2006 ; Omongo, 2012

to whiteflies. causing premature fall of  older leaves. Bellotti, 2012a ;  Vanderschuren, 2012

MEcu 72 in Uganda in 2005. Bellotti et al., 2012b ; Omongo, 2012a

38 spider species and 123 insect Horowitx et al., 2011

species that are predators of B. tabaci .

Integrated Nutrient Management ACC deaminase OBD- Biofertilizer Variety of stochastic disturbances Baig et al., 2012

PGPRs Microbiome mediated physiology van Kleunen, et al., 2010

8 Termites  (Chew , eat stem cuttings) Nematodes Khan et al., 2012

Cassava root scale  Stictococcus vayssierrei Causing the cassava to grow poorly and die or  rot.

Cassava white scale Aonidomytil usalbus Cause the tubers to be smaller and deformed, 

and stems  to lose a lot of water and die

Integrated Nutrient Management "Induced  systemic  tolerance  (1ST)" OBD-Bioertilizer Enhance  survivability of stress-affected  plants Yang et al. ,2009

Bacillus subtilis PGPRs modulation of hormonal status in host plant

Fluorescent pseudomonads Increase in stress ethylene level plant  In response to Singh and Jha , 2016

 stress stimuliof (salinity, drought,  metal toxicity, etc.

VOC produced by Bacillus subtilis confers  salt tolerance Zhang et al., 2008

reduce the growth inhibitory effects of stressors Penrose and Glick, 2003
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Table 7.  Cassava  Biology and Pathology 

N/S Picture Description Cassava Disease and Pest Infection Cause References

1 Water soaked lesions on plant leaves Humidity conditions favour growth and reproduction . Fokunang et al., 2000a

2 Cassava anthracnose disease (CAD)  shoot symptom Collerorrichum gloeosporioidss f.sp.manihotis. Jeffries et  al., 1990 ; Muimba, 1982 ; Theberge, 1985

A. P1 = Young cassava  plant with shoot  die-back  symptoms Oval pale-brown shallow  depressions bearing a spot. IITA, 1999 ; Hahn et  al., 1989b

P2 =  Cassava seedling with shoot  die-back  and wilt symptoms Insect   vectors  Pseudotheraptus  devastans, dist. Boher et al.,1983 ; Legg, 2009 ; Navas-Castillo et al., 2011

P3  = Seedlings,arrow shows  point of infected leaf  defoliation Fungus in  the development and spread  of the disease. Chadrasekharan-Nair  et al., 1 979 ; Lozano et al.,1981

B. P1 =  Large deep expanding cankers Blocking transportation of vital materials. Van der Bruggen  and  Maraite, 1987

P2 =  Crocodile-like deep anthracnose cankers Growth potential of  the  fungus. Fokunang  et al., 1995 ; Fokunang et al., 2000b

P3 = Superficial invading cankers Pseudotheraptus devastans dis.t Hahn  and Keyser, 1985 ; Fokunang  et al., 2000a

P4 = Non expanding superficial cankers Less severe  on  the  approach  of  the dry season. Fokunang  et al., 2001 ; Muyolo, 1984

3 Plant with white leaf spot symptom Fungal pathogen can  differ  inherited  characteristics. Tjamos et  al.,1993

Fungal  pathogen can arise by mutation in somatic cells Hahn et al., 1989b; Suresh et al.,1990

4 CAD infected stem cuttings 50-75% loss in seed viability ; 40-60%  germination rate. lkotun and Hahn,1992 ; Hahn et al.,1989a

Leaves, the disease appears as patches of yellow areas . Boher et al.,1983

Cassava root rot diseases Fungi living on the root  or in the soil. Miskito et al., 2000

5 a. Cassava mealybugs Phenacoccus manihoti Apoanagyrus (Epidinocarsis) lopezi,  parasitoid Neuenschwander, 2001

6 b. Leaf distortion caused by cassava mealybugs Biologically reasonable mechanism to use, Lohr, 1990

 a. Cassava green mite Pests. Gerling et al., 2001

7A. b.Speckled appearance on cassava leaves caused by cassava mites Affects photosynthetic pathway . El-Sharkawy et al., 1984c, 1985

a. Adult whiteflies Pests. Asiimwe et al., 2007

7B. b.Whiteflies feeding on the underside of cassava leaf Pests. Night, 2011

c.Chlorosis and sooty mould on cassava leaves Numerous small circular sunken spots on  the Ieaf Iamina Boher et  al.,1983

as a result of whiteflies feeding. affected by genotype and environment. Cock et al., 1979; Irikura et al., 1979
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Table 8. Comparative analysis of Treatments Materials for Cassava Cultivation. 

 

 
 

 

 

 

Treatment Materials Control yield/Ton Treatment/Yield /ton Impacts on  Crop Component References

1 Poultry manure 13.7  t /ha 23.7  t/ha Cell elongation of  plant tissues as a result of steady release Sharma and  Govil, 1988;

and mineralization of nutrients Christopher et al., 2007; Adoa ,2009

 Highest nutrient content Susan et al., 2005

IFAD cassava varieties.

4 t/ha 13.7 t / ha 23.7  t/ha  Increase the  chlorophyll content in stem/leaves and Adjei-Nsiah and Issaka , 2013

 the photosynthesis and physiological  metabolism Luo et al., 2008

Dry matter partitioning depends on genotype-by-environmental Fregence et al., 1994 ; Lebot, 2009

interaction

Higher  root yields of cassava Wilson and Dufour, 2002; Agbaje and Akinlosotu, 2004; ssaka et al., 2007; 

Ojeniyi et al., 2012

Enhances the cooking  quality (mealiness) Adoa , 2009

Positive correlation between dry matter content and Safo-Kantanka and Asare 1993; 

cooking quality Safo-Kantanka and Owusu Nipa, 1992

2 Biofertilzer

OBD-Biofertilizer Contents Biocontrol microbes, PGRs  and PGPR Crawford, et al., 1993 , Bressan, W.2003

5  t/ha 12t / ha 16 t/ha Nitrogen fixing bacteria (NFB) Madhaiyan et al.,  2010  

Phosphate Solubilizing  Bacteria Xie H et al., (1996) ; Chanway and  Holl (1993)Vyas and Gulati 2009

Potassium Solubilizing Bacteria Loon Van et al.,  (1998) 

PGRs and PGPR  are expensive when compared to manure Khan et al. 2017

and chemical fertilizer

Improved yield under drought environment Ergen and Budak 2009

PGPR  improve the availability of micro-nutrients to host plant and Khosravi et al. 2018;Kumari et al. 2018

improving growth pattern of roots

PGPR  direct mechanisms involved synthesis of phytohormones Glick 1995; Lugtenberg and Kamilova 2009)

or increase   in the uptake of certain nutrients from the environment 

Creating antagonistic substances or by inducing re- sistance to pathogensSood et al. 2018 ;Beneduzi et al. 2012

PGPR  produces exopolysaccharides to protecti plant from desiccation , Pal et al. 1999 ;  Salazar et al. 2009 ;Czarnes et al. 2000

pollutant degradation and maintenance of primary cellular functions Zhuang et al. 2007 ; Bahat- Samet et al. 2004 

PGPR like Azospirillum conserve water by producing cyst formation Somers et al. 2004 ; Chenu1993; Vu et al. 2009

 around the roots by synthesis of poly-hydroxybutyrate and 

 production of melanin 

mycorrhizal fungi act as a strong sink for photosynthate and Kohler et al. 2007; Wu et al. 2005a, b ; Barea et al. 2002; Artursson et al. 2006

 improved soil aggregation

PGPR involved in the synthesis of phytohormones Karlidag et al. 2007

Improve root area, thus fas- cinate nutrients uptake, and Compant et al. 2005; Kloeppe et al. 1999 ; Adesemoye et al. 2010

tempt plant productivity

Guard plants from the lethal effects of environmental stresses Glick et al. 1997

Water conservation and endure diverse biotic and abiotic stress conditionsVessey 2003; Wang et al. 2012
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 Table 9.  Combine Organic/Chemical Fertilizers Application to Cassava crop. 

 

 

   
           

Figure 11 | Summary of main key mechanisms targeted by microorganism-based biostimulants in Table 17 and reactive oxygen species detoxification 

         (ROS detox) enzymes might also ameliorate the plant-induced stress (Van Oosten et al., 2017). 

Treatment Materials Control yield/Ton Treatment/Yield /ton Impacts on  Crop Component References

1 Mineral fertilizer/Poultry manure 60  t / ha Chemical fertilizers supplied the bulk of the macronutrients CSIR- AGRA, 2012

needed by the plants FAO, 2012

Organic sources provide secondary and micronutrients 

Good soil fertility management strategy. Ojeniyi et al., 2012

Higher fertilizer use  efficiency. Santhi and Selvakumari , 2000

2 Biofertilizer 

OBD-Biofertilizer Integrated nutrient management programme  Ayoola and Makinde (2007)

Urea/NPK 15:15:15/OBD-Biofertilizer Formulatiom Slow release  fertilizer ensuring a long residual effect Tisdale et al., 1993

300 kg/ha NPK 15:15:15 +  1.0 t/ha OBD-Biofertilizer 12 t/ha 20.5 t/ha  Reduce losses by converting inorganic  N into organic forms Kramer et al., 2002

300 kg/ha NPK 15:15:15 +  2.0  t/ha OBD-Biofertilizer 22 t/ha Improves the  microbial properties of the soil Belay et al., 2001

300 kg/ha NPK 15:15:15 +  3.0  t/ha OBD- Biofertilizer 30 t/ha Sustain maximum crop productivity and  profitability Ayeni, 2008

300 kg/ha NPK 15:15:15 +  4.0 t/ha OBD- Biofertilizer 31.2 t/ha Minimizing environmental impact from nutrient use

600 kg/ha NPK (15:15:15) 35.6 t /ha 
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Table 10. Soil Indicators for Soil Heath and Soil Quality. 

 

 
 

References Index used/proposed

Andrews et al. ,2002 Indices based on parameters related to entrance of water and plant  growth

Bastida et al, 2006 Microbiological index of soil degradation – dehydrogenase, water

soluble carbohydrates, urease, water soluble carbon and respiration

Beck ,1984 EAN – more enzyme activities (dehydrogenase, phosphatase, protease and amylase)

Dilly and Blume, 1990 As many as ten parameters

Doran and Parkin,1994 Index based on sustainable production, environmental quality and

human and animal health

Doran and Parkin, 1994 Soil quality index = function of (food and fibre production, erosivity,

groundwater quality, surface water quality, air quality and food quality)

Kandeler and Eder ,1993 Simple indices – quotients between enzymatic activity and microbial biomass

Kang et al , 2005 Microbial index of soil (CHECK) based on microbial biomass C and N,

potentially mineralisable N, soil respiration, bacterial population, mycorrhizal infection, and dehydrogenase and phosphatase activities

Karlen et al.,1994 Soil quality index based on four sour functions : ability of soil to

accommodate water entry, retain and supply water to plants, resist degradation and support plant growth

Klein and Paschke,2000 Total/active funagal and bacteria ratio – the ratio of total total to active

fungal plus bacterial biovolumes is divided by the ratio of the active fungal to bacterial biovolume

Parr et al.,1992 Soil quality index based on different functions: soil properties, potential

productivity, environmental factors, human and animal health, erodibility, biological diversity, food quality and safety and management inputs

Parr et al. ,1992 Soil quality index = function of (soil properties, potential productivity,

environmental factors, human/animal health, erodibility, biological diversity, food quality/safety and management input

Puglisi et al.,2005 Soil alteration index

Stefanic et al., 1984 Biological index of soil fertility based on activity of two enzymes –

dehydrogenase and catalase

Trasar-cepeda et al.,1998; Indices/equations based on prameters that reflect the total content of N  or organic C

Harris et al. ,1996 Soil quality index based on three soil functions: ability to resist soil

erosion, provide plant nutrients and provide a favourable root environment

Velasquez et al.,2007 General indicator of soil quality based on abundance of 17 groups of macrofauna, eight soil chemical properties 

(extractable P, total P, exchangeable K, Mg, Ca, Na and pH, six physical properties 

(bulk density, real density, porosity, moisture content, shear strength, penetration resistance, soil morphological features and organic C fractions
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Table 11.  Categorization of general goals for agro-ecosystems. 
 

 
  

 N.B | * Variables also influenced by soil properties. 

 

 Table 12.  Key microbial metabolic processes related to plant nutrition. 

 

 

Goal type General goal Key controlling variables

Economic viability High productivity Genetic potential, weather, soil, management, economics

Low cost of production Yield potential*, input requirements*, input costs

Market variation, production variation*

Stewardship Preservation of productive land Soil, climate, management

Healthy animals Feed quantity and quality*, disease

High quality food and fiber Chemical or microbial contamination*, composition*

Social Viable local communities Population size, economic viability, economic, diversification

Profitability, size and resilience of industry

Environment Clean water Climate, soil, management

Clean air Climate, soil, management

Wildlife habitat Climate, soil, management

Element Biochemical process Microbial genes Soil enzymology literature Culture-independent References Culture-dependent  References

Nitrogen Nitrogen fixation nifD, nifH, nifK Reganold et al., 2010; Xue et al., 2013 Bremer et al., 1990

Protein depolymerization apr, npr, sub Mader et al., 2002 Rasche et al., 2014 Kohler et al., 2007

Urea catabolism ureA, ureB, ureC Dick et al., 1988; Bowles et al., 2014 Reganold et al., 2010; Fierer et al., 2012, Xue et al., 2013 Kohler et al., 2007

Phosphorous Phosphate ester cleavage phoA, phoD, phoX, Mader et al., 2002; Garcia-Ruiz et al., 2008 Fraser et al., 2015 Kohler et al., 2007

ACPase, glpQ, ushA, appA, phyA, phyB

Phosphonate breakdown phnJ, phnX Bergkemper et al., 2016 Schmalenberger et al.,2008

Sulphur Sulfate ester cleavage aslA, asfA Garcia-Ruiz et al., 2008 Schmalenberger et al., 2008

Sulfonate breakdown ssuD Kertesz and Mirleau,2004
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Table 13. Progress and current status of cassava genetic transformation (Otaiku et al., 2020). 
 

 
 

Endophytic fungi, represented here as arbuscular mycorrhizal fungi (AMF) (lilac), might form specialized structures, called arbuscules, where plant-

derived carbon sources, mainly sucrose (Su), are exchanged for fungus-provided phosphate (Pi), nitrogen (NH4
+), and potassium (K+) elements (blue). 

Plant cytoplasmic sucrose is transported to the peri-arbuscular space, where it is converted to hexose (HEX) to be assimilated by the fungus. Hexose 

is finally converted to glycogen (G) for long-distance transport (Hardoim et al., 2015). Phosphate and nitrogen are transported inside the fungal 

cytoplasm as polyphosphate granules (Poly-P), which are converted to Pi and arginine (Arg) in the arbuscule. Pi is transported to the host cytoplasm, 

N/S Explant Regeneration Gene-transfer Plasmid Selection Target Integration/ References

mode technique marker genes traits expression

1 Somatic cotyledon SE Agrobacterium pGV1040(nptII,bar,uidA) ppt Herbicide resistance SAP,GAP Sarriaetal.2000

2 Suspension SE Agrobacterium pHMG(uidAint,hpt,pmi) Hygromycin, mannose Herbicide resistance SAP,NAP, GAP Zhangetal.2000b

3 Suspension SE Agrobacterium pCP15GUS;pCP54GUS Hygromycin, Root-specific SAP,NAP, GAP Zhangetal.2003b

(uid Aint,hpt) promoters

4 Suspension SE Agrobacterium    pCASP1(uidAint,hpt) Hygromycin Improved  protein SAP,NAP Zhangetal.2003a

content GAP,WAP

5 Suspension SE Agrobacterium patatin-CYP79D1/D2(nptII) Paromomycin Reduced  cyanogen SAP,RAP SiritungaandSayre2004

content

6 Suspension SE Agrobacterium    pILTAB9001(nptII) Paromomycin CMD resistance SAP, NAP Chellappanetal. 2004

7 Somatic cotyledon SE Agrobacterium        3D(nptII) Paromomycin improvedstarch SAP,RAP Ihemereetal.2006

content

8 Somaticcotyledon SE Agrobacterium pMAT21;pEXM2;pIPT5(ipt) Kanamycin marker-free SAP,RAP,GAP,GAP Saelimetal.2009

9 Suspension S0 Agrobacterium pCP2 Hygromycin tissue-specific SAP,GAP Beltr´ anetal.2010

promoter

10 Suspension SE Agrobacterium pSG529(nptII) Paromomycin prolonged leaf life SAP,RAP Zhangetal.2010

11 Suspension SE Agrobacterium pILTAB600;pILTAB601(nptII) Paromomycin mproved protein SAP,WAP Abharyetal. 2011

content

12 Suspension SE Agrobacterium p35S::GBSSI-RNAi;p54/1.0 Ygromycin waxy cassava SAP,RAP, Zhaoetal.2011

13 Suspension SE Agrobacterium RNAiFL-CP(nptII) Paromomycin CBSVDresistance SAP,NAP Yadavetal.2011
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whereas Arg is initially converted to urea (Ur) and then to ammonium (NH+). Fungal and bacterial plant hormones, such as auxins (IAA), gibberellins 

(GAs), cytokinins (CKs), volatile organic compounds (VOCs), and polyamines (Poly-NH2), as well as secondary metabolites (SMs), are transferred 

to the host (violet) Figure 12. 

 
 

Table 14. Various organic or inorganic substances produced by plant growth promoting rhizobacteria facilitating resource acquisition to stimulate plant growth. 

 

 

PGPR in the Biofertilizer to Cassava PGP  Traits References

Rahnella aquatilis ACC deaminase* Mehnaz, Baig and Lazarovits , 2010

Acinetobacter sp., Pseudomonas sp.; Enterobacter sp. ACC deaminase* Indiragandhi et al., 2008)  Kumar et al., 2008

Pseudomonas jessenii ACC deaminase Rajkumar and Freitas , 2008

Pseudomonas aeruginosa ACC deaminase* Ganesan, 2008

Achromobacter xylosoxidans A551, ACC deaminase* Belimov et al., 2005

Rhizobium hedysari ATCC 43676 ACC deaminase* Ma et al., 2003

Pseudomonas marginalis DP3 ACC deaminase* Belimov et al., 2005

Mesorhizobium loti ACC deaminase* Sullivan  et al., 2002

Rhizobium leguminosarum Indole-3-acetic acid Ahemad and Kibret , 2014

Azotobacter sp. ; Pseudomonas sp. Indole-3-acetic acid Ahmad et al., 2006 ;  Roesti et al., 2006

Bacillus sp, Paenibacillus sp. Indole-3-acetic acid Beneduzi et al., 2008

Rhizobium leguminosarum b. Trifolii ACCC18002 Indole-3-acetic acid Jin et al., 2006

Streptomyces strains C Indole-3-acetic acid Sadeghi et al., 2012

Enterobacter aerogenes NII-0907, Enterobacter aerogenes NII-0929, Indole-3-acetic acid Deepa, et al., 2010

Pseudomonas tolaasii ACC23, Pseudomonas fluorescens ACC9, Indole-3-acetic acid Dell’Amico et al., 2008

Mesorhizobium loti MP6 ; Enterobacter sp., Klebsiella Indole-3-acetic acid Chandra et al., 2007 ; De Santi Ferrara et al., 2013

Pseudomonas aeruginosa, Pseudomonas fluorescens, Ralstonia metallidurans Siderophores Braud et al., 2009

Proteus vulgaris ; Enterobacter sp. Siderophores Rani et al., 2009 ; Kumar et al., 2008

Azotobacter sp., Mesorhizobium sp. Siderophores Ahmad et al., 2008

Mesorhizobium ciceri, Azotobacter chroococcum Siderophores Wani et al., 2007

Pseudomonas, Bacillus ; Pseudomonas jessenii Siderophores Wani et al., 2007  ; Rajkumar and Freitas ,2008

Bacillus sp. PSB10 ; Paenibacillus polymyxa Siderophores Wani et al., 2007  ; Ahemad and Kibret , 2014

Pseudomonas aeruginosa4EA ; Enterobacter asburiae Siderophores Naik and Dubey , 2011 ;  Ahemad and Khan , 2010
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Table 15.  Different microbial biofertilizers available in market and their application. 

 

Microbial biofertilizers Trade names Application

1 Azospirillum lipoferum, Biospirillum, Green Plus, 1) For normal and acidic soils

Azospirillum brasilense, and different strains of Azospirillum Bio-N, Azo-S, ROM, and and dry soils. (2) For paddy and other crops   

2 Rhizobium,  Azospirillum,  Azotobacter, Bacillus sp.,  ARATI  BAJA | liquid formulations  *1 All crops 

Acetobacter, Fungi sp.

3 Enterobacter,  Flavobacterium, Klebsiella, Mesorhizobium, ARATI NAWOZ | liquid formulations All crops 

Micrococcus,  Fungi sp.

4 Agrobacterium, Azospirillum, Azotobacter, Arthrobacter, OBD-Biofertilizer All crops 

Bacillus,  Enterobacter, Fugi sp.

5 Pseudomonas, Rhizobium, Rhodococcus, Bacillus,  Fungi sp. Gateway Biofertilizer *2 All crops 

6 Azotobacter chroococcum,different strains of Azoto- Bioazoto, Bhoomi Rakshak, Kisaan Azotobacter culture For all crops like wheat,

bacter (non-symbiotic) ,and Azonik sorghum, barley, maize, paddy, mustard, sunflower,

sesamum, cotton, sugarcane, banana, grapes, papaya, water-

melon, onion, potato, tomato, cauliflower, chilly, lady finger,

rapeseed, linseed, tobacco,mulberry, coconut, spices,

fruits, flowers, plantation, crops, and forest plants     

7 Gluconacetobacter :  diazotropicus Sugar-Plus   For sugarcane  

8 Rhizobium strains (symbiotic, nitrogen fixing) Biobium, Rhizo-Enrich,Kisaan Rhizobium culture, Pulses (gram, peas, lentil, moong, urd, cowpea, and

Rhizoteeka, Green Earth Reap arhar), oil legumes (groundnut and soyabeans), fodder

N4, and Rhizonik legumes (barseem and  lucerne), and forest tree

legumes (subabul, shisam, and shinsh

9 Phosphorus-solubilizing and Phosphorus-mobilizing Biophos, Get-Phos, MYCO-RISE, Kisaan P.S.B. culture, For all crops                    

microbes like Bacillus , megaterium, mycorrizhal fungi, etc. MycoRhiz, Reap P, and Phosphonive

10 Potassium-mobilizing or BIO-NPK, Bharpur, For all crops                    

potash bacteria like Bacillus BioPotash, Potash-Cure, and

mucilagenosus Green Earth Reap K

11 Sulfur-solubilizing microbes like Thiobacillus thioxidans Biosulf, Sulf-cure, Sulphonik, S Sol B®, Siron,  For cereals, millets, pulses, oilseeds, fiber crops, sugar

and MicroS-109 crops, forage crops, plantation crops, vegetables, fruits

spices, flowers, medicinal crops, aromatic crops,

orchards, and ornamentals   

12 Zinc-solubilizing microbes Biozinc, Zinc-Cure, Zinc activator, Zinc extra For crops like paddy, wheat,

 and MicroZ-109 pulses, citrus, pomegranate, ginger, etc.             

13 Silica-solubilizing microbes BioSilica, Silica-Cure, and For crops like cereals, sugar cane, onions, leafy greens,

Silica-109 legumes, cucumber, pumpkin, and gourd.
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 N.B |   Visit website for material safety data sheet (MSDS)  

*   https://www.academia.edu/43310069/ARATI_BAJA_-Liquid_Biofertilizer_Integrated_soil_fertility_management_ISFM_  

*2   https://www.academia.edu/42632817/Gateway_Organic_Fertilizer_Biofertilizer_Gateway_Biofertilizer_Organic_3.0  

 

Table 16. Cassava crop inoculants: Biofertilizer and Biostimulator Phosphate Solubilizing Bacteria. 
 

 
 

Phosphate solubilizing bacteria Plant growth promoting traits Cassava  Inocula References

Pseudomonas sp. ACC deaminase, IAA, siderophore OBD-Biofertilizer Poonguzhali et al., 2008

Bacillus subtilis IAA, siderophore, antifungal activity OTAI AG® Singh et al., 2008

Pseudomonas fluorescens ACC deaminase OBD-Biofertilizer Shaharoona et al., 2008

Acinetobacter sp., ACC deaminase, IAA, antifungal activity, OTAI AG® Indiragandhi et al., 2008

Pseudomonas sp. N2- fixation OBD-Biofertilizer

Enterobacter sp. ACC deaminase, IAA, siderophore solubilization OTAI AG® Kumar et al., 2008

Pseudomonas jessenii ACC deaminase, IAA, siderophore, heavy metal   solubilization OTAI AG® Rajkumar et al., 2008

Pseudomonas aeruginosa ACC deaminase, IAA, siderophore OBD-Biofertilizer Ganesan, et al., 2008

Pseudomonas sp. ACC deaminase, IAA, siderophore, heavy metal solubilization OBD-Biofertilizer Rajkumar et al., 2008

Azotobacter sp., Mesorhizobium sp.,  IAA, siderophore, antifungal activity, ammonia OBD-Biofertilizer Ahmad et al., 2008

Pseudomonas sp.,  production, HCN OTAI  X ® 

Bacillus spp. IAA, siderophores, ammonia production, HCN, OBD-Biofertilizer Wani et al., 2007a ; Wani et al., 2007c ; 

chromium reduction, metal solubilization Ahmad et  al., 2008

Bacillus subtilis IAA OTAI AG® Zaidi et al., 2006

Pseudomonas sp., Bacillus sp. IAA, siderophore OTAI AG® , OTAI  X® Rajkumar et al., 2006

Pseudomonas putida antifungal activity, siderophore, HCN OBD-Biofertilizer Pandey et al., 2006
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 Plate 1.  Control field Casaava experiment.       Plate 2.  Treated field cassava experiment using Biofertilizer. 

  

 

Table 17. Soil microbiome engineering inoculants in biofertilizers applied in cassava cultivation. 

 

 
 

Biofertilizer Types Group  Micro-organisms Cassava  inocula Applications References

Biofertilizer for micronutrients

1 N2-fixing biofertilizers Azotobacter,  Nostoc OBD-Biofertilizer Biofertilizer Amutha et al. 2014 ; Otaiku et al., 2019a

a. Free-living Rhizobium OTAI  X ®   Biofertilizer Meena et  al. 2015f, 2016b; Otaiku et al., 2019a

b. Symbiotic Azospirillum, Gluconacetobacter diazotrophicus OBD-Biofertilizer Bioremediation Jaiswal et al. 2016 ; Murumkar et al.2016

c. Associative symbiotic Associative symbiotic OBD-Biofertilizer Xeonbiotic Biodegrader Otaiku and Alhaji, 2019 ; Otaiku  and  Alhaji c

2 P-solubilizing biofertilizers

a. Bacteria Bacillus megaterium var.  Bacillus subtilis OTAI AG® Biofertilizer,  Biopesticide Kumar et al. 2017a; Meena et al. 2015a; 

Bacillus circulans, Pseudomonas striata OBD-Biofertilizer Xeonbiotic Biodegrader Bahadur et al. 2016b; Das and Pradhan 2016).

Biocontrol Otaiku et al., 2019a ;Otaiku et al., 2019b

b. Fungi

P-mobilizing biofertilizers Penicillium sp., Aspergillus awamori OTAI AG
®   Biofertilizer, Biopesticide Meena et al. 2015b, e; Teotia et al. 2016; 

OTAI  X ®, ,OTAI  AG ®   Xeonbiotic Biodegrader Otaiku and Alhaji, 2019 ; Otaiku and Alhaji a, b ,c

Biofertilizer for macronutrients

a. Arbuscular mycorrhiza Glomus sp., Gigaspora sp., Acaulospora sp., OTAI AG
® Biofertilizer Verma et al. 2017b; Kumar et al. 2017b

Scutellospora sp. and Sclerocystis sp. OBD-Biofertilizer Mycorrhizosphere Raghavendra et al. 2016; Zahedi 2016

Sulphur oxidizers Thiobocblus thioxidans OTAI AG
® Mycoremediation  Sharma et  al. 2012 ; Vaid et al. 2014 

a. Zinc solubilizers Bacillus sp., Pseudomonas sp., Aspergillus niger OBD-Biofertilizer Biofertilizer Sharma et  al. 2012 ; Vaid et al. 2014 

b. Potassium and silicate solubilizers Pseudomonas sp., Bacillus sp.,  OTAI  X® Xeonbiotic Biodegrader Nath et al. 2017; Sarkar et al. 2017; Otaiku  and  Alhaji  a ,c

OTAI AG® Bioremediation Rawat et al. 2016; Yasin et al. 2016

c. Manganese solubilizers Penicillium citrinum OBD-Biofertilizer Bioremediation Lovley, 2000 ;Ehrlich & Newman, 2009

Plant growth-promoting rhizobacteria

a. PGPR

Bacteria Pseudomonas fluorescens, Bacillus sp.,  OTAI AG® Biofertilizer , Bioremediation Yadav and Sidhu 2016 ;  Saha et al. 2016b

Azotobacter, Klebsiella, Enterobacter, Azospirillum, OBD-Biofertilizer Xeonbiotic Biodegrader Meena et al. 2016d; Otaiku and Alhaji., 2020

b. Fungi

Biofilmed biofertilizers Fungal-bacterial biofilms (FBB),  OBD-Biofertilizer Biofertilizer , Bioremediation Hettiarachchi et al. ,2014 ; Amundson et al., 2007

fungal-rhizobial biofilms (FRB); Bacillus cereus OTAI AG® Bio-control Verma et  al. 2014, 2015b; Meena et  al. 2013c, 2014a; 

Trivedi et al. ,2011 ;Otaiku et al., 2019a
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Table 18. Activities of soil borne bacterial functions regulated by Quorum Sensing (QS) signals, adapted from Raghavendra (2017). 

 

 
 

N.B |      

BHL = N-butyryl-homoserine lactone   |   dDHL = N-dodecanoyl-homoserine lactone      

DHL = N-decanoyl- homoserine lactone | OdDHL   = 3-oxo-N-dodecanoyl-homoserine lactone     

DKP  =   diketo-peptides | OHL = N-octanoyl-homoserine lactone   |   OOHL =   3-oxo-N- octanoyl-homoserine lactone.   

  

     

Taxonomic class Genus or species    Cassava  Inocula QS signals produced Known regulated functions References

1 Actinobacteria Streptomyces sp. OBD-Biofertilizer Gamma-butyrolactones Antibiotic compound synthesis, Chater ,1993  and Shaaban et al. , 2016

differentiation

2 Alpha- proteobacteri Agrobacterium tumefaciens OTAI AG® OOHL Ti plasmid transfer, virulence White and Winans , 2007 ; Otaiku et al., 2019a

3 Rhodopseudomonas OTAI AG® pCHL Chemotaxis Schaefer et al. 2008

palustris

4 Mesorhizobium loti OBD-Biofertilizer OHHL, OHL, DHL, dDHL Nodulation Yang et al., 2009; Otaiku et al., 2019a

5 Gammaproteobacteria Pseudomonas aeruginosa OTAI AG® BHL, OdDHL Biofilm, elastase, lipase, alkaline protease, Braeken et al. ,2008 

OBD-Biofertilizer HCN, pyocyanin, exotoxin A, swarming, Ferluga et al. ,2008

lectins, rhamnolipids, virulence. Otaiku et al., 2019a

PQS Elastase, pyocyanin synthesis, LecA lectin, Dubern and Diggle , 2008

biofilm, AHL signaling, motility + intrinsic

functions (antibiosis, iron chelation)

DKPs (e.g., cyclo (D-Ala-LV al)) Unclear, cross-linked to AHL signaling Holden et al. , 1999

6 Pseudomonas fluorescens OTAI AG® OHHL, OHL Biofilm formation, wheat rhizosphere Wei and Zhang , 2006

colonization, biocontrol ability. Otaiku et al., 2019a
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Table 19. Lists of some beneficial plant growth promoting traits in the OBD-Biofertilizer. 

 

 
 

 

            Table 11. List of some beneficial plant growth-promoting traits in the OBD-Biofertilizer

N/S Trait Role Microbe References

1 Phosphate 1. Organic acid production Bacillus licheniformis; B. amyloliquefaciens; Penicillium sp. Chen et al., 2006 and Wakelin et al.,2004

solubilization.

2.Phytase production Bacillus mucilaginosus; Aspergillus  niger Vassilev et al., 2007 ; Ryu et al., 2005

3. Phosphatase production  Serratia marcescens Ryu et al., 2005 and Unno et al., 2005

2 Nitrogen fixation. 1. Symbiotic  Vesicular-arbuscular mycorrhizal  fungi Shah et al., 2010

2. Non-symbiotic Gluconacetobacter diazotrophicus Bhattacharyya and Jha., 2012

3 Phytohormone 1. IAA production Bacillus licheniformis;  Penicillium sp. Goswami et al., 2016  and Waqas et al., 2012

production. 2. Cytokinin production Bacillus megaterium Castro et al. , 2008

3. Gibberellin production Acetobacter diazotrophicus,  Penicillium sp. Basti et al.,1998  and Waqas et al..2012

4 Biocontrol. 1. Extracellular enzyme production

(a) Chitinase Enterobacter agglomerans Nielsen and Sorensen ,1999

(b) Glucanase Bacillus cepacia Compant et al., 2005

2. Antibiotic production Pseudomonas fluorescens  ; Trichoderma  koningii Thomashow and Weller ,1988 ; Xiao -Yan et al., 2006

3. Siderophore production Pseudomonas aeruginosa Braud et al., 2009 a , b

4. HCN production Production Pseudomonas chlororaphis Nandi et al., 2015

5 Potassium Production  and excretion of Bacillus mucilaginosus Ullman et al., 1996

solubilization organic acid and inorganic acid

Induced systemic 1. ACC deaminase production Trichoderma , Asperellum;  Penicillium citrinum Mayak et al., 2004, Viterbo et al. , 2010 ;  Jia et al.,2000

tolerance. 2. Exopolysaccharide production Oceanobac illus

3. VOC production Bacillus amyloliquefaciens
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Table 19. Continuation  

Cassava Genotypes Traits of interest (genes) References 

60444 Biofortified β-carotene (crtB)  Welsch et al. (2010)

60444 Biofortified    β-carotene(crtB, crtI, crtY)  Bonilla (2010)

60444 Leaf retention (senescence-inducible ipt) Zhang et al. (2010) 

                     60444                   Waxy starch (RNAi GBSSI)                 Zhao et al. (2011)                

60444 CBSVD (RNAi FL-CP) Yadav et al. (2011) 

60444  Protein content/cyanogenic content (HNL) Narayanan et al. (2011)  

60444   RNAi CMD (ACMV/EACMV); CBSD (n.d.) Taylor et al. (2012) 

 60444z    Iron biofortification (FEA1) Ihemere et al. (2012) 

TME7 (Oko-Iyawo) CMV and CBSV resistance (RNAi-CBSV coat protein) Vanderschuren et al. (2012)

Adira4 Waxy starch (RNAi-GBSSI) Koehorst-van Putten et al. (2012)

60444 UCBSV resistance (siRNA-UCBSV coat protein) Ogwok et al. (2012)

60444 Biofortified β-carotene (crtB and DXS) Failla et al. (2012)

60444 UCBSV resistance (RNAi-UCBSV ) coat protein) Odipio et al. (2014)

KU50z Resistance to Sri Lankan CMV (AV2 and AV1 coat proteins) Ntui et al. (2015)

TME 204 Resistance to CBSV and UCBSV, increase Chauhan et al. (2015)

TME7, 60444 carotene content in roots

60444 Biofortified vitamin B6 (AtTDX1.1 and AtTDX2) Li et al. (2015)
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Various bacterial structures, such as flagella, pili, secretion Total Cyanogenic Glucosides 

concentration depends on cultivar, environmental condition, cultural practices and plant age 

(McMahon et al., 1995). Cassava roots contain the glycoside linamarin which is converted into 

hydrogen cyanide (HCN) by the enzyme linamarinase. HCN is toxic to man and hence much of the 

processing of cassava tubers is to promote release and removal of the HCN prior to consumption. 

When linamarin is hydrolysed, it releases hydro cyanide, a volatile poison (Cooke and Coursey, 

1981); but some cyanide can be detoxified by the human body (Oke, 1983). In some varieties of 

cassava (Figure 20), the interior of the roots (parenchyma) contains only a small amount of cyanide. 

This is called sweet cassava, which may be boiled and eaten, as is normal in the South Pacific 

(Bradbury and Holloway, 1988). The linamarin content of cassava flour was reported to be more than 

system machineries (e.g., TIV SS and SEC), and lipopolys-accharides, as well as bacterium-derived 

proteins and molecules, such as effectors (EF), auto inducers, and antibiotics, are detected by the host 

cells and trigger the induced systemic, resistance (ISR) response (red). ACC, the direct precursor of 

ethylene (ET), is metabolized by bacteria via the enzyme ACC deaminase (ACCd), thus ameliorating 

abiotic stress (light green). A range of reactive oxygen species detoxification (ROS detox) enzymes 

might also ameliorate the plant-induced stress (orange). Diazotrophic bacterial endophytes are capable 

of fixing atmospheric nitrogen (N) and might actively transport NH+ and nitrate (NO) to the host (dark 

green). Bacterial processes of siderophore production (Sid) and uptake (Fe) that are involved in plant 

growth promotion, bio-control, and phytoremediation are shown in brown (Figure 12). 

 

CASSAVA NUTRITION, GENETICS AND ECONOMICS 

Crop yields are greatly reduced by low soil fertility. Cassava is grown throughout the tropic and could 

be regarded as the most important root crop, in terms of area cultivated and total production (Ano, 

2003), see Figures 3 and 4. Because cassava roots are very low in protein content (values range among 

cultivars from 5 to 19 g/kg dry matter, based on an average conservative Kjeldahl nitrogen-to-protein 

conversion factor of 2.49 - 3.67 (Yeoh and Truong,1996). Cassava leaves are also consumed and 

constitute an excellent source for protein supplement (leaf crude protein contents on a dry basis range 

among cultivars from 21% to 39% (Yeoh and Chew, 1976), minerals and vitamins for the human diet 

in many African and Asian countries, as well as in certain regions of Brazil (Lancaster and   Brooks, 

1983; Montagnac et al., 2009; Djuikwo et al., 2011). All cassava organs, except seeds, contain 

Cyanogenic Glucosides (CG). Cultivars with < 100 mg kg/1 fresh weight (FW) are called sweet 

‘while cultivars with 100-500 mg kg/1 are bitter cassava (Wheatley et al., 1993) double during 

drought (Cardoso et al., 2005), which leads to outbreaks of konzo; most recently there were more than 

100 cases in Nampula and Zambezia Provinces due to drought in 2005 (Muquingue et al., 2005). 

Consumption of cassava and cassava products containing large amounts of cyanide can cause acute 

intoxication, with symptoms of dizziness, headache, nausea, vomiting, stomach pains, diarrhoea and 

sometimes death (Mlingi et al.,1992)  high-cyanide cassava roots containing >100ppm cyanide are 

normally bitter and are called bitter cassava pains, diarrhoea and sometimes death (Mlingi et al.,1992). 

high-cyanide cassava roots containing >100ppm cyanide are normally bitter and are called bitter 

cassava. Cassava (Manihot Esculenta Crantz), a Euphorbiaceae native to the Amazon region bordering 

Venezuela (Cagnon et al., 2002), is one of the main energy foods required by more than 700 million 

people in at least 105 countries. The most widely exploited product of the crop is starch, both for its 

nutritional importance and its use in the textile, pharmaceutical, food, and paper industries (Nunes et 

al., 2009)
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Figure 12 | Beneficial properties of endophytes on the cassava crop adapted from Hardoim et al., 

2015. Endophytes high potential as a less exploited resource in sustainable agriculture. 

In Brazil, cassava is cultivated on 1.5 million hectares, with a production of 22.8 million tonnes and 

an average yield of 15.2 Mg/ ha (IBGE, 2016). In the world ranking, Brazil occupies the 21th 

position for cassava yield, with India in first place with a yield of 36.5 Mg /ha (Faostat, 2015). In 

general, this low yield is due to the use of few inputs in managing the crop, and its cultivation in 

marginal areas. Research to improve traditional cassava processing methods for Garri production 

(machinery, skills or reduce the HCN in Garri, in Nigeria in the early 1950s (Idowu, 1990) Figure 

13. Because of this and the high demand for cassava products, the use of nutrients through 

fertilization is inevitable in the near future (Adjei-Nsiahe Sakyi-Dawson, 2012). CGIAR, the 

Consultative Group on International Agricultural Research breeding strategy goals centered on 

selecting and developing cultivars with adequate and stable yields, and able to adapt to a wide range 

of biotic and abiotic stresses (Kawano, 2003; Hershey and Jennings,1992; Jennings and Iglesias, 

2002). This strategy was stimulated by cassava’s inherent capacity to tolerate adverse environments, 

particularly those where other major staple food crops such as cereals and grain legumes would fail 

to produce. 

Cassava Cyanogenic Glucoside Production Implications | 

Cyanogenic glucosides (Figure 14) naturally occur in cassava and are an important nutritional 

quality determining factor in its edible parts of cassava. High amounts of cyanogenic glucosides 

ingestion expose humans to cyanide intoxication, with detrimental effects on their health. Levels 

of cyanogenic glucosides need to be very low in fresh cassava roots or in cassava products, if 

these foods are to be considered innocuous and safe for consumption. Cassava roots generally 

have a high moisture content, which can differ with variants. The average moisture content of 

cassava roots, flour and starch usually ranks in the color sequence: yellow = orange > cream > 

white (Aniedu, and Omodamiro, 2012; .; Vimala et al., 2009; La Frano et al., 2013; Maziya-Dixon  
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et al., 2005; Ukenye et al., 2013; Onitilo et al., 2007). 

 

 
   Figure  13 | A Simplified Example of the Cassava Value Chain., adapted from Cassava Master   

         Plan March, 2006, the Presidential Initiative on Cassava, p, 14. 
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Figure 14 | Commonly known and less known agronomic reasons for high cyanogenic glucoside levels in 

cassava. Adapted from   https://doi.org/10.1371/journal.pone.0216708.g001 and Imakumbili et al., 2019. 

 

         

Figure 15 | (a) Transgenic somatic embryos and (b) plant of cassava cv. 60444 transformed with Ensifer 

adaherens OV14, expressing GUS. Note the formation of nodules on roots (arrows). This event was one of 

three obtained for which a Southern blot (c), confirmed the presence of single copy insertions (first and third 

lanes) as well as multi-copies of the T-DNA (second lane; fourth lane is control transgenic plant). 

Cassava starch is characteristically low in fiber (0.10–0.15%) and lipids (0.11–0.22%) reported by 

Moorthy et al., 1994; Moorthy et al., 1996. Acidic and basic amino acids such as glutamic, aspartic 

and arginine are, however, relatively plentiful in cassava roots (Gil and Buitrago, 2002). Cassava root 

is relatively poor in other nutrients such as proteins, lipids, and vitamins (Talsma,2014). The Codex 

Alimentarius Commission currently recommends total hydrogen cyanide (HCN) levels (a measure of 

cyanogenic glucoside content) of less than 50 mg/kg in fresh cassava roots, as safe for consumption. 

Cases of cassava cyanide intoxication in cassava dependent communities, have often resulted in a 

health disorder called konzo (spastic paraparesis), which causes an irreversible paralysis of legs in 

affected individuals (Bradbury and Denton, 2010 ; Nzwalo and Cliff, 2011) A number of sub-Saharan 

African countries have been affected by konzo, and the disorder is reported as persistent in very 

deprived areas of Mozambique, the Democratic Republic of Congo (DRC), Tanzania Banea et al., 

2012, Central African Republic (Tylleska and Legue,1994; Mbelesso et al., 2008) and in eastern 

Cameroon (Cigleneki et al., 2011; Agbor et al., 2014).The low organic carbon (OC) levels in all 

(100%) crop fields together with the low use of fertilizers, explains why N (Nitrogen) was low in these 

soils. Soil OC (organic carbon) is the main source of N for crops grown without fertilizer application. 

With regard to cyanogenic glucoside production, some studies have reported that an improved supply 

of N, on N deficient soils, is able to reduce cassava root HCN levels (Mohankumar et al., 1988; and 

Cadavid, et al., 1998). Other studies have similarly reported reductions in cyanogenic glucosides with 

improved N (Nitrogen) supply (Agbede, 2018; Pooja and Swadija, 2018). Improving the supply of N 

on these N deficient soils could thus be beneficial for reducing cassava root HCN levels. A moderate 

supply of N would however be better, as a high supply of N could increase cyanogenic glucoside 

levels (Pooja and Swadija,2018). Some studies have however shown no effects on cyanogenic 

glucosides with an improved supply of Potassium (Cuvaca et al., 2015). Reduced root HCN levels are 

expected in cassava with an adequate supply of Ca (Gosh and Nair,1984; Mohankumar et al., 1988). 

Like soil Ca, the adequate supply of Mg and Zn in soils, is beneficial for reducing cyanogenic 

glucosides in cassava (Mohankumar et al., 1988; Susan ,2005). This is observed in the reduction of 

cassava root HCN levels, with the application of ash, which is rich in K, Ca and Mg (Susan,2005). 

Transgenic Cassava | 

In the past 25 years genetic transformation of cassava (M. esculenta Crantz) using Agrobacterium 

https://www.eajournals.org/
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tumefaciens or particle bombardment as gene-delivery systems with a new frontier globally where it 

has been possible to obtain transgenic plants of cassava expressing marker and selectable genes, as  

well as genes of agronomic interest. Agrobacterium-mediated transformation (Agrotrans) of cassava 

has been the technology of choice because it is more easily accessed by national agricultural research  

 

programs (NARPs) in developing countries, where ultimately, transgenic cassava landraces with novel 

traits are most needed. The first genetic transformations (Table 13) of cassava using Agrobacterium 

were published in 1996 (Li et al., 1996; Raemakers et al., 1996; Schöpke et al., 1996), much work 

was done prior to these reports, especially at the International Center for Tropical Agriculture (CIAT) 

and at the Vrije Universiteit Brussel. The pioneering experiments that culminated with the production 

of the first transgenic cassava calli, expressing selectable and useful genes, were developed towards 

the end of the 1980s by (Calderon-Urrea, 1988).  Currently, Table 20 cassava has been transformed 

with bacteria different than Agrobacterium named Ensifer adhaerens OV14. It contains chromosomal 

genes homologous to virulence genes of Agrobacterium (Rudder et al., 2014) and was identified in 

1982 as a gram-negative, predatory bacterium, inhabiting the rhizosphere with the ability to transfer 

genes into several plants, i.e., potato, tobacco, Arabidopsis, Solanum, and rice (Casida 1982; Wendt et 

al., 2012; Soto et al., 2015). Apparently, Ensifer seemed to be less virulent and pathogenic than 

Agrobacterium and therefore was considered an ideal vector to produce clean and unique insertions 

into plants (Rudder et al., 2014; Zúñiga-Soto et al., 2015). Transgenic cassava cultivars reported since 

2010 for which genes expressing traits of interest for producers and/or consumers, other than marker 

and selectable genes, have been introduced. The Genetic Transformation Platform at CIAT used E. 

adhaerens strain OV14 with plasmid pCAMBIA5105 to transform cassava cv. 60444, based on the 

protocol reported by Zúñiga-Soto et al. (2015) for rice. Three transgenic independent lines were 

confirmed by Southern blot as having one insert (Two lines) or four copies of the T-DNA (Figure 12). 

CONCLUSIONS 

 

The study soil microbiomes during cassava cultivation as a component of integrated soil fertility 

management and a potential for climate mitigation cum crops sustainable development; and confirmed 

in the report of Yomeni et al., (2010). Poor quality planting material is often associated with marginal 

growth and productivity of cassava. Microbial inoculants have paramount significance (Table 15) in 

integrated nutrient management systems to sustain agricultural productivity and healthy environment 

(Adesemoye and Kloepper, 2009). Application of 300 kg/ha NPK 15:15:15 + 3t/ha OBD -Biofertilizer 

gave high cassava root yield and is recommended for cassava production on soils having similar 

characteristics as the soil of the field experimental site (Table 4 and Figure 7). Environmental stresses 

are becoming a major problem and productivity is declining at an unprecedented rate (Figure 8). Our 

dependence on chemical fertilizers and pesticides has encouraged the thriving of industries that are 

producing life-threatening chemicals and which are not only hazardous for human consumption but 

can also disturb the ecological balance (Table 9). Biofertilizers can help solve the problem of feeding 

an increasing global population at a time when agriculture is facing various environmental stresses. It 

is important to realize the useful aspects of biofertilizers and implement its application to modern 

agricultural practices (Table 13). The success of the science related to biofertilizers depends on 

inventions of innovative strategies related to the functions of PGPRs (Figure 10) and their proper 

application to the field of agriculture. The major challenge in this area of research lies in the fact that 

along with the identification of various strains of PGPRs and its properties it is essential to dissect the 

actual mechanism of functioning of PGPRs for their efficacy toward exploitation in sustainable 

agriculture (Table 12). Future cassava development of cultivars (Table 20) should integrate the 

knowledge of the phytobiome for improved yields, and able to adapt to a wide range of biotic and 

https://www.eajournals.org/
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abiotic stresses and other ecosystem functions. 
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Gateway fertilizer Plant, Abeokuta, Nigeria Visit: YOU Tube:  

Waste –to-wealth Technology www.youtube.com/watch?v=pG2ODAx3ICY  

www.academia.edu/video/lBboEl 

Bio-waste Conversion to Biofertilizer Production Organic Foliar fertilization | 

www.academia.edu/47688969/Foliar_fertilization_of_organic_sunflower_enhanced_yield_component

s_and_seed_yield_in_the_humid_tropics. 

ARATI BAJA ® -Liquid Biofertilizer |Integrated soil fertility management (ISFM) 

www.academia.edu/43310069/ARATI_BAJA_Liquid_Biofertilizer_Integrated_soil_fertility_manage

ment_ISFM_ 

ARATI Yaranta | Bioherbicide for ecological agriculture (Post-Emergence) | 

www.academia.edu/41445611/ARATI_Yaranta_Bioherbicide_for_ecological_agriculture_Post_Emer

gence_ 

Regenerative Agriculture                       

https://www.academia.edu/44877314/Regenerative_Agriculture_4_0_Tool_Box 

ARATI Biopesticide 

https://www.academia.edu/41445902/ARATI_Biopesticide_Microbial_Granular_and_Liquid 
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