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ABSTRACT: In this paper, Bayesian estimation using diffuse (vague) priors is carried out for 

the parameters of a two parameter Weibull distribution. Expressions for the marginal posterior 

densities in this case are not available in closed form. Approximate Bayesian methods based 

on Lindley (1980) formula and Tierney and Kadane (1986) Laplace approach are used to 

obtain expressions for posterior densities. A comparison based on posterior and asymptotic 

variances is done using simulated data. The results obtained indicate that, the posterior 

variances for scale parameter   obtained by Laplace method are smaller than both the 

Lindley approximation and asymptotic variances of their MLE counterparts.   

KEYWORDS: Weibull Distribution, Lindley Approximation, Laplace Approximation, 
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INTRODUCTION 

The Weibull distribution is one of the most widely used distributions in reliability and survival 

analysis because of various shapes assumed by the probability density functions (p.d.f) and the 

hazard function. The Weibull distribution has been used effectively in analyzing lifetime data 

particularly when the data are censored which is very common in survival data and life testing 

experiments. The Weibull distribution was derived from the problem of material strength and 

it has been widely used as a lifetime model. Weibull distribution corresponds to a family of 

distribution that covers a wide range of distributions that goes from the normal model to the 

exponential model making it applicable in different areas for instance in fatigue life, strength 

of materials, genetic research, quality control and reliability analysis. The probability density 

function (p.d.f) for the two parameter Weibull distribution is given by  
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Likelihood Based Estimation of Parameters of Weibull Distribution. 

The Maximum Likelihood Estimation  

Let 1 2, ,..., nX X X  be independent random samples of size n from Weibull distribution with the 

p.d.f given by (1.1). Differentiating with respect to   and  and equating to zero we obtain 


and 

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From (2.2) we obtained the maximum likelihood estimates of  as  
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Substituting (2.3) into (2.1), yields an expression in terms of 


 only as given by 
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(2.4) 

The maximum likelihood estimate for 


is obtained from (2.4) with the aid of standard iterative 

procedures. 

 
Variance and Covariance Estimates 

The asymptotic variance-covariance matrix of 


and 


are obtained by inverting information 

matrix with elements that are negatives of expected values of second order derivatives of 

logarithms of the likelihood functions. Cohen (1965) suggested that in the present situation it 

is appropriate to approximate the expected values by their maximum likelihood estimates. 

Accordingly, we have as the approximate variance-covariance matrix with elements  
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When  and   are independent, the covariance of the above matrix is zero.  

When  is known the asymptotic variances for 


is obtained by  
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Let 1 2, ,..., nX X X  be a random sample from a population with a two parameter Weibull 

distribution given by 

                 ( / , )f x   =
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The likelihood function is the given by  
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Suppose that we are ignorant about the parameters ( ,  ) so that the diffuse (vague) prior 

used is 
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The joint posterior distribution is then given by 
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The marginal p.d.f of x  is given by 
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Similarly, the marginal posterior p.d.f’s of   and  are required in order to compute the 

corresponding posterior expectations of   and   as                                                                               
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 respectively 

Since the Bayes estimate for   and   involve evaluating ratios of two mathematically 

intractable integrals, appropriate Bayesian approximations are applied. Assuming  is known, 

the likelihood function for   is given by 
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The log likelihood function for  is given by 
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Since  is known, the prior density for   is given by  
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 The posterior density for   is given by 
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Therefore the posterior expectation for  is obtained by  
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Laplace Approximation  

Since the Bayes estimate of   involve ratio of two mathematically intractable integrals, 

Tierney and Kadane, (1986) proposed to estimate (3.8) as follows 
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The posterior mode 


of L is obtained by differentiating L with respect to  once and equating 

to zero, that is, 
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Giving 
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 in terms of  as 
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The posterior mode (local maximum) for L  is obtained by differentiating L  with respect to 

   and equating to zero to get 
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2 
 are equal to the minus the inverse of the second derivative of the log posterior 

density at its mode given by 
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Thus, the Laplace approximation of (3.8) is given by 
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The posterior mode of L  and L are given by 
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  and      
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Thus, the Laplace approximation of (3.17) is  
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Hence the posterior variance of  is  
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Lindley (1980) Approximation 

Lindley (1980) developed a multidimensional linear Bayes estimate of an arbitrary function as 

an approximation of an asymptotic expansion of the ratio of two integrals which cannot be 

expressed in a closed form given by 
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(3.24) 

all evaluated at MLE of   (see, Lindley, 1980). For two parameter Weibull distribution we 

have, 
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Fisher’s information matrix is given by  
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Since  is known, we let 
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The quantities 'ijL s  are the higher order derivatives of log-likelihood function. Because  is 

known, the following derivatives are used to obtain Bayes estimates of    
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( , )th

ij i j   is obtained by inverting minus second derivative of log likelihood function with 

respect to    evaluated at ( ),  1,2i 
 

   

Therefore, Bayes estimate of   using (3.24) is given by 
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Then 
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Hence the posterior variance for   is given by 

                           
 

22( / ) / ( / )Var x E x E x                                                                   
(3.38) 

 

RESULTS  

Simulation experiments were carried out using R software to compare the performance of the 

Bayes and MLE estimates of the two parameter Weibull distribution. We assumed the shape 

parameter   is known. We performed simulation experiment with different sample sizes (10, 

30, 50 and 100), drawn from a Weibull distribution for different values of shape parameter    

(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6). We specified the true value of the scale parameter to 

be fixed at one ( 1)   for all the sample sizes.  We computed estimates based on two different 

Bayesian methods, that is, Tierney and Kadane, (1986) Laplace approximation method, 

Lindley (1980) approximation and the method of Maximum likelihood estimation.  
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Figure 1: Graph of Estimates of   against Lambda ( ) for a Sample of n=10 for affixed 

1   

 

 

 

 

Figure 2: Graph of Estimates of   against Lambda ( ) for a sample of n=100 for affixed  

1          
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               Figure 3: Graph of variance for sample size 10 against values of Lambda ( ).   

 

  Figure 4: Graph of variance for sample size 100 against values of Lambda ( ).   
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DISCUSSIONS  

Figure 1 show the estimates of  under varying size of , Bayes estimates obtained by Lindley 

(1980) and Tierney and Kadane, (1986) Laplace approximation are found to be larger than the 

MLE counter parts. Lindley (1980) approximation is found to overestimate the scale parameter

 ; however the three methods demonstrate the tendency for their estimates and variances to 

perform better for larger sample size. This is shown in Figure 2 when the sample size is 

increased to 100. As the sample size increases the MLE and Bayes estimates becomes more 

consistent and accurate. 

Figure 3 show the variances of the estimates of   for varying size of shape parameter for a 

sample of 10. It is observed that posterior variances of estimates of   are smaller than the 

asymptotic variances of MLE hence more precise and accurate. However, both variances tend 

to converge to zero as the value of  get larger. For the sample of 10 Tierney and Kadane, 

(1986) Laplace approximation is seen to perform slightly better than Lindley (1980), since it 

stabilizes faster. 

Figure 4 show that Tierney and Kadane, (1986) Laplace approximation performed better for 

larger sample of 100. The variance of MLE are observed to stabilize faster when the sample 

size and shape parameter  increase. 

It is also observed that the Bayesian method generally performed better for both small and 

larger value of  than the MLE counter parts. Lindley (1980) and Laplace methods tend to 

perform almost similarly for smaller . But the Tierney and Kadane, (1986) Laplace 

approximation is found to produce better results than both MLE and Lindley (1980) for larger 

  and larger samples sizes. 

 

CONCLUSION 

We have shown Bayesian techniques for estimating the scale parameter of the two parameter 

Weibull distribution which produces estimates with smaller variances than the MLE. Tierney 

and Kadane, (1986) Laplace approximation which requires the second derivatives in its 

computation is found to be more accurate than the Lindley (1980) which requires third 

derivatives in its computation. This is in line with Tierney et al (1989) findings, that Laplace 

method is more accurate than the third derivative method of Lindley (1980). Even though the 

two Bayesian methods are better than the MLE counter parts, they have their own limitations. 

Lindley (1980) approximation requires existence of MLE in its computation. This appears as 

if it is an adjustment to the MLE to reduce variability. On the other hand, Laplace 

approximation requires existence of a unimodal distribution in its computation, hence difficult 

to use in cases of a multi modal distribution.  

 

RECOMMENDATION 

In this study, it is noted that the posterior variances of Bayes estimates are smaller than 

asymptotic variances. Comparing the two Bayesian methods, Tierney and Kadane, (1986) 

Laplace approximation method has smaller variance than the Lindley (1980) approximation 

technique hence more precise and accurate. Laplace approximation does not require explicit 
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third order derivatives in its computation which are required in Lindley (1980) approximation 

method hence simple to compute. We therefore recommend further work to be done on two 

parameter Weibull distribution when both scale and shape parameters are unknown to 

investigate accuracy of the two Bayesian methods. 
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