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ABSTRACT: This paper examines the Bayesian estimation of parameters of linear regression 

model when the assumption of normality is not tenable. Outlier observations have been traced 

and identified as one of the factors causing departures from normality assumptions. Thus, the 

Ordinary Least Squares (OLS) estimates are unbiased but the variances are no longer 

minimum which can hinder the validity of the inferences to be made about the parameters.  

Nigerian Stock Exchange and Simulated data were used for illustrations. The finding shows 

that the posterior mean is unbiased, consistent and similar to the results obtained in 

homoscedasticity version and the degrees-of-freedom obtained are relatively small and the 

existence of fat tail is confirmed.  

 

KEYWORDS:  conditional posterior density; non-hierarchical prior; gibbs-sampling; outlier; 

metropolis-hasting 

 

INTRODUCTION  

 

It is generally accepted that the normal distribution is sensitive to departures from the 

assumptions, because of its 'thin' tails. Outlier observations have been traced and identified as 

one of the factors causing departures from normal assumptions. Outlier observations can have 

a marked impact on inferences.   Many alternative 'robust' methods have been developed in the 

studies of Hamsel et al (1986), Rogers and Tukey (1993),  Zellner (1976), Geweke (1993) and 

Koop (2003) amongst others. 

 

One of the possibilities that have been suggested for addressing departure from normality 

consists of replacing the Normal process with thick-tail distribution, such as Student-t, either 

in its univariate or multivariate forms. The Student-t distribution is similar to the Normal 

distribution, but has fatter tails and is more flexible. In fact, the Normal distribution is a special 

case of the Student-t which occurs as 'v' degree-of-freedom tends to infinity ( )v  . Thus, we 

have a model that allows for a more flexible error distribution without leaving our familiar 

Normal linear regression model framework.  In Bayesian literature, few authors have worked 

on the Bayesian analysis of linear regression with Student-t disturbances. Among these is the 

use of Student-t as the distributional assumption has been an important tool, to Jeffreys (1941) 

for the case of mean estimation. Fraser (1976, 1979) used this distribution in a linear models, 

and Maronna (1976) discussed maximum likelihood estimation of the mean and covariance 

matrix in the same situation. Bayesian analysis with independent Student-t linear model was 

proposed by Geweke (1993) using a Gibbs sampler to sample when the degree-of -freedom of 

Student-t disturbance is unknown. Geweke (1993) and Fernandez and Steel (201b) specified 

non-informative prior for   and precision, 2  and prior specification for   and v  as gamma 

and chi-square distributions respectively. 
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Toshiaki (2001) used the Metropolis-Hasting acceptance-rejection algorithm proposed by 

Tierney  (1994) to sample the degrees-of-freedom from conditional probability. Koop (2003) 

in his work specified hierarchical prior for degrees-of-freedom v . However, in literature the 

posterior odds ratio favours Student-t linear models degrees-of-freedom in the range 3 to 7 over 

normal linear model.  

 

Pati and Dunson (2014) consider the problem of robust Bayesian inference on the mean 

regression function allowing the residual density to change flexibility with predictors. The 

proposed class of the model is based on a Gaussian for the collection of residual densities 

indexed by predictors with heteroscedasticity arising as a special case. Different priors were 

considered such as the special case in which the residual distribution follow a homoscedastic 

Student-t distribution with unknown degrees-of-freedom by placing hyper prior on the degrees-

of-freedom ),( vv baV , with ),( baG  denoting the gamma distribution with mean ba / , one 

can obtain a data adaptive approach to down-weighting outliers in estimating the mean 

regression function with the Student-t low degrees of freedom is heavy-tailed, outliers are 

allowed. 

 

Andrew et al. (2008) propose a new proper prior distribution that produces stable, regularised 

estimates while still being vague enough to be used as a default in routine applied work. Their 

procedure can be seen as a generalisation of the scale prior of Raftery (1996) to the t-case, with 

the additional innovation that the prior scale parameter is given a direct interpretation in terms 

of logistic regression parameters. Andrew et al (2008) are motivated to consider the t-family 

because flat-tailed distribution allows for robust inference (see, Berger and Berliner (1986); 

Lange et al (1989) because it allows easy and stable computation in logistic regression by 

placing iteratively weighted least squares within an approximate Expectation Maximization ( 

EM )algorithm. 

 

The independence Jeffreys prior is widely used in scale mixtures of normals contain some 

important distributions such  as normal, Student-t with v degrees of freedom, logistic, Laplace, 

Cauchy and exponential power family with power 21  q . Thus, for this wide and practically 

important class of distributions the two-piece model with the independence Jeffrey  prior leads 

to valid inference in any sample of two or more observations (Rubio and Steel, 2011). Yeojin 

et al (2000) recommend a class of weakly informative prior densities for  that go to zero in 

the boundary as   becomes degenerate, thus ensuring that the posterior mode (i.e. the 

maximum penalized likelihood estimate) is always non-degenerate. They recommend a class 

of Wishart priors with a default choice of hyper-parameters. The degrees of freedom is the 

number of varying coefficients plus two and the scale matrix is the identity matrix multiplied 

by a large enough number. 
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Another study worthy of mentioning is the work of Geweke (1993) and Koop (2003) on 

treatment of Student-t in linear regression model. Geweke (1993) specified 2

( )v  for hyper-

hyper-parameter v the degrees of freedom while Koop (2003) specified hierarchical priors for 

degrees of freedom v . This study seeks to extend the work of Koop (2003) by specifying non-

hierarchical  priors  for degrees of freedom  as equivalent to hierarchical priors adopted in Koop 

(2003). 

 

The structures of the paper are as follows. In section 2 we describe an overview of Ordinary 

Least Squares (OLS) estimation of parameters and Bayesian estimation approach when the 

error terms are heteroscedasticity of unknown form. Inference in the presence of 

heteroscedasticity of unknown form are developed in section 3. Data generation, model 

estimation and discussion of results are in section 4. Concluding remarks are in section 5.  

 

 Overview of Ordinary Least Squares (OLS) 

The model specification is given by       

                                
2; (0, ) (1)ny X U U MVN I  

 
 

Where y is vector of responses arranged in a vector  '

1 1 2( , , , )n ny y y y    and a matrix  

'

1 2( , , , )n k nX X X X   and the rank of X is k.   

The least squares estimator of the linear regression model in Eq. (2) seeks to minimize the 

residual sum of squares in the model in Eq. (1) 

                                   
2

1

ˆ( ) (2)
n

i i

i

SSE y X 


   

The estimated vector ̂  that minimizes    is obtained by differentiating Eq. (2) with respect 

to   and equating to zero to have  

                                 
1ˆ ( ) (3)T TX X X y   

and the estimated value of 2s  is computed by  

                       2
ˆ ˆ( ) ( )

; (4)
Ty X y X

s v n k
n k

  
  

                                          

Bayesian Estimation 

The Likelihood 

Consider the model in Eq. (1) using the definition of the multivariate normal density, we can 
write likelihood function as:  
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2

2

( | , ) exp ( ) ( ) (5)
2

(2 )

N

T

N

h h
P y h y X y X  



  
     

  
 

For derivation, it proves convenient to re-write the likelihood in a slightly different way. From 

Eq. (3) we have  

                        

2 ˆ ˆ( ) ( ) ( ) ( ) (6)T T Ty X y X vs X X          

 For many technical derivations, it is easier and convenient to work with error precision 

defined as 2h    rather than variance. Using the result in (6), the likelihood in Eq. (5) can be 

written as 

           

 
2

2

2

ˆ ˆ( | , ) exp ( ) ( ) (7)
2

(2 )

N

T T

N

h h
P y h vs X X    



  
      

  
 

Eq. (7) can be separated into two by setting n v k   which leads to 

 

       

2 2
2

2

1 ˆ ˆ( | , ) exp ( ) ( ) exp (8)
2 2

(2 )

k v

T T

N

h hv
p y h h X X h

s
    




     
        

     
 

The quantity ' '2 ˆ ˆexp ( ) ( )
2

k
h

h X X   
  

    
  

 in Eq. (8) resembles the kernel of the 

multivariate normal density and 2
2

exp
2

v
hv

h
s

  
  
  

 also looks like the kernel of the gamma 

density. 

 

A Scale Mixture of Normal  

Suppose a random vector has the conditional multivariate normal distribution with probability 

density function: 

                                           | , , | , (9)y X N y X  


 
  

 
 

Where ,  in turn, is a scalar random variable following a  

                            | , (10)
2 2

v v
v G
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process; here 0v  is a parameter. The density of the joint distribution of y  and   is then 

                                       

          

1

12

2 1
2

1
( , | , , ) | 2 ( ) | exp ( ) ( )

2

( / 2)
exp (11)

( / 2) 2

T

v
v

p y X v y X y X

v v

v

    










  
      

 

 
 

  

 

The joint density was integrated with respect to   to hsave 

        

12 1 1
2 2

0

( / 2) ( ) ( )
( , | , , ) exp exp

( / 2) 2 2

(12)

v
v v Tv v y X y X

p y X v
v

  
     

 
      

       
    

  

Eq. (12) indicates that the integrand is the kernel of the density 

                                      
1( ) ( )

| ,
2 2

TN v y X y X v
G

 


     
 
 

 

Hence, the integral in Eq. (12) is equal to the reciprocal of the integration constant of the 

corresponding distribution, that is 

                               
1

1
2

0

( ) ( )
exp

2

v Ty X y X v 
  

 
     

  
 

  

                                                  

1 2

( )
2 (13)

( ) ( )

2

n v
T

N v

y X y X 









   
 
 

 

Employing Eq. (12) and Eq. (13), and rearranging we then obtain 

                                    

2

1 2
1

2

( ) ( )
2( | , , ) ( ) ( )

( ) | |
2

v

N v
T

N v
v

p y X v y X y X
v

v

  









      
 

          



European Journal of Statistics and Probability 

Vol.8, No.3, pp, 1-21, October 2020  

Published by ECRTD-UK  

                                                             Print ISSN: 2055-0154(Print), Online ISSN 2055-0162(Online) 

6 
 

                                             
1 2

1

2

( )
( ) ( )2 1 (14)

( ) | |
2

N v
T

N v
y X y X

vv
v

 









   
 

  

 

This is the density of n-dimensional multivariate t-distribution with mean vector X , scale 

matrix  , and degrees of freedom parameter v . 

Student-t linear regression model  

                                                                     

1| ( , , ) (15)i iy X t X h v 

 
Where v  is the degree of freedom parameter and v  is part of the specification of the model. 

The model can be expressed as; 

                                              

( )
2 2

1
1

1
( )

( )2( | , , ) 1 (16)

( )
2

N v
T

i

v
y X

f y h v
v vh

v h













  

  
  

 

We can write the  Student-t likelihood function as 

                                              
1

( | , , ( , , , ) (17)
N

T

i i

i

p y h v t y X h v 




 

                                

( )
2 2

1
1 1

1
( )

( )2( | , , ) 1

( )
2

N v
TN
i

i

v
y X

p y h v
v vh

v h










 


  

  
  

  

The full likelihood of the model can be expressed as    

                                          

( )

2
2

1
1

( )(( 1) / 2)
( | , , ) 1 (18)

( / 2)

v N
N TN

i

i

y Xv
p y h v h

v v vh












  
  
   

  

An equivalent specification of Eq. (9) is  

                                                         
1| ( , ) (19)i iy X N X h 

   

Where, '

1 1, 2( , )k        is a vector of unknown parameters,  '

1 1, 2( , )k        is a 

vector of unknown parameters and h  is unknown parameter.  

                             
1; ~ (0, ) ( 1,2, , )T

i i i i iy X U U N h i N        
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It is more convenient to work with error precision rather than variances and, hence, we define; 

                                  
' '

1 2 1 2( , , , ) ( , , , )N N              

                                  
1

1 2var( ) ; ( , , , )i NU h diag             

The likelihood function of the Eq.(19) can be expressed as; 

                          
1 2

2 2
1

1

( )
( | , , ) exp (20)

2

N TN
i i i

i

i

y X
p y h h

h

 
  




 
  

 
            

The likelihood function in Eq. (7), can be re- written as; 

           

2 2
2

2

1 ˆ ˆ( | , ) exp ( ) ( ) exp (21)
2 2

(2 )

k v

T T

N

h hv
p y h h X X h

s
    




     
        

     
 

The right hand side and left hand side of Eq. (21) follows Normal and Gamma densities 

respectively. 

 

The Priors and their distributions 

The likelihood in Eq.(21) suggests that Normal-Gamma prior could be used for the parameter 

  and h . 

Prior for   condition on h is of the form: 

                                                             
1| ( , )h N h     

Prior for h is of the form 

                                                                   
2

2 2
( , )

s
h G s

v




                                                

 

1
2

1

1 22

2 2 2

( , ) exp ( ) ( ) ( ) (22)
22

(2 ) | | ( )( )
2

v k

T

k v

h h v
p h

sv s

v

    










  
       

   

Eq.(22) is the normal-Gamma prior, where,   and 
2

2

1

2
( )( )
2

v
v s

v





  are the prior for  and 

integrating constant respectively.
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The above Eq.(22) is the Normal-Gamma prior defined as; 

                                                     
2( , ) ( , | , , , )NGp h f h s v    

 

We specify prior for degrees-of-freedom in two steps. The first step is ( )p v  
defined by 

                                              1

( ) ( |1, ) (23)
N

G i

i

p f v 


  

with density function given as; 

                                     

2

1 2

1

( ) exp( ) (24)
2

vN
i

i

i

v
p cG




 







   

where the integrating constant given by 1 2( ) ( )
2 2

v

Nv v
cG



     

 

while the second step is ( )p v given by  

                                                   
0( ) ( | ,2) (25)Gp v f v v    

with density function given as 

   

                                           1

0

( ) exp (26)
v

p v cG
v






  
  

 
 

where the integrating constant is 1cG .  Exponential distribution which is simply the Gamma 

with 2 degrees-of-freedom was specified. 

 

The Posterior distributions 

The posterior is proportional to the product of likelihood and the prior is of the form 

1
2

1

1 22

2 2 2

12 2
2

2

( , , | ) exp ( ) ( ) ( )
22

(2 ) | | ( )( )
2

1 ˆ ˆexp ( ) ( ) exp (27)
2 2

(2 )

v k

T

k v

k v

T T

N

h h v
p h y

sv s

v

h hv
h X X h

s

    



   














  
        

   

     
       
     

 

The posterior density of   is 
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 2 1 1ˆ ˆ( | , , ) exp ( ) ( ( )) ( ( )) exp ( ) ( ) ( )
2 2

T T Th h
P h y vs X X            

                
   

Where  

1 1 1 1 1 ˆ[ ] [ ]T T

n hX X hX X            

 

and 

 

                                                 
1 1 1[ ]T

n hX X      

 

                                               
1 1 1ˆ[ ]T

n n hX X        

 
So that   is sampled from 

                                                     
| , , ( ( ), )n nh y N   

                       
 

The posterior density of h  is  

                     

0 1
1 22( | , , ) exp ( ) ( ) (28)

2

N v

Th
p h y h y X y X vs  




 
         

 
 

                                                                        nv N v   

                                                       
2 1 2( ) ( )T

n nv s y X y X vs       

1 2
2

ˆ ˆ( ) ( )T

n

n

y X y X vs
s

v

    
  

then  

                                       

2

1 2
(29)

ˆ ˆ( ) ( )

n
n T

v
s

y X y X vs 






   
 

Therefore h  is sampled from 

                                                
2| , , [ , ]n nh y G s v   

 The posterior density of   is 
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21 2

2 2
1

1 1
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vTN N
i i i i

i i i

i i

y X v
p h

h



  
   




 

   
    

  
 

 

                                 
1 2

2
1

1

( )
( | , ) exp

2 2

v TN
i i i

i i

i

y X v
p h

h

 
  






 
   

 


 

 

                            

2

1

12
1

( )

( | , ) exp (30)
2 2

N
T

v i i i

i
i i

y X
v

p h
h



 

  






 
 

   
 
  



 

       

2
2 2

1

1
( )

2 2 2

n
Ti

i i i i

i

hU vv
G where U y X 



 
      

 


 

Establishing ( | , , , )p v y h    is relatively straightforward, since v  does not enter the 

likelihood and it can be confirmed that ( | , , , ) ( | )p v y h p v    via Bayes theorem: 

                                             

                                            

2

1 2

1

( | ) exp exp
2

vN
i

i

i

v v
p v cG

v



 





 







  
    

   
  

Hence, the posterior density of v  is given as         

                                         ( | , , , ) exp ; (31)
2 2

Nv N
v v

p v y h v


 
   



   
     
   

  

                                                             1

10

1 1
(log )

2

N

i i

iv 
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Inferences of Heteroscedasticity of Unknown Form 

To carry out Bayesian inference in the presence of heteroscedasticity of unknown form 

described above, a posterior simulator known as Gibbs sampling and Metropolis-Hasting are 

required. The posterior for  , ,h   and v  are simply those derived in Eq.(27), (28) and (31). 

i. ( | , , )p h y   is sampled from Normal distribution 

                           | , ( ( ), )n nh N     

ii. ( | , , )p h y   is sampled from Gamma distribution 

                                   
2| , [ , ]n nh y G s v 

 

iii. ( | , , )ip h y   which depends on   is sampled from density below 

 

2
2 2

1

1
, ; ( )

2 2 2

N
Ti

i i i i

i

hU vv
G U y X 



 
    

 
  

( | , , )p v h y   does not take the form of any convenient density. Nevertheless, a  

Metropolis-Hasting Algorithm was employed to have a complete posterior simulator.   

                                          ( | , , , ) exp
2 2

Nv N
v v

p v y h v


 
   



   
     
   

  ;  

                                                             1

1

1 1
(log )

2

N

i i

iv
  



    

 

Data Generation Process and Model Estimation 

In an attempt to estimate the parameters of linear regression model in presence of 

heteroscedasticity of known form, we adopted Markov-Chain Monte Carlo (MCMC) 

experiment. The Monte-Carlo experiment is carried out as follows; 

 Empirical Illustration 

 

 The data used for empirical application is a daily data operation of the Nigeria Stock Exchange 

market and comprises: Nigeria Stock Exchange All Share Index (ASEASI), Earning Per Share 
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(EPS), Return on Asset (ROA) and Earnings before Interest Taxes and Management (EBITM). 

The dependent variable is NSEASI, the explanatory variables
41 2 3, ,X X X and X  are EPS, 

ROE, ROA and EBITM respectively and the number of observation is 545. 

We set 
2 84 10s x   and 5v   for hyper parameters and prior for the regression coefficient   

and co-variance matrix   

are 
 

 

                    

1

0 2.40 0 0 0 0

10 0 6.0 10 0 0 0

,5000 0 0 0.15 0 0

10000 0 0 0 0.60 0

10000 0 0 0 0 0.6

x





   
   
   
     
   
   
      

 

.  Finally, we employed a Metropolis within Gibbs algorithm to draw posterior results for 

and . Inferences on parameters are based on 25000 draws with 5000 burn-in are discarded. 

 

Simulated Illustration 

i. Consider the model 

                          

            
2; (0, )i iy X U U N    

Where y is the dependent variable and X is the explanatory variables,   is the co- 

efficient and iU  are normally and independently distributed with  ( ) 0iE U   and 

2 2( )i iE U   

                                        

ii. We generate error term i  which are normally and independently distributed with 

( ) 0iE    and 
2 2( )i iE    for  1,2,...,i N  i.e. (0,1)i N  

 

iii. We specify the variance-covariance matrix for the error terms: diagonal N N  matrix, 

with the squared OLS residuals, with ‘robust standard errors’ are obtained by taking the 

square root estimated variance-covariance matrix. 'PP  .  

Since   is a symmetric positive definite matrix, we decompose it by a non-singular 

matrix  P  such that: 



European Journal of Statistics and Probability 

Vol.8, No.3, pp, 1-21, October 2020  

Published by ECRTD-UK  

                                                             Print ISSN: 2055-0154(Print), Online ISSN 2055-0162(Online) 

13 
 

                                                  

2

1

2

2

2

0 0

0 0

0 0 N

P







 
 
 

  
 
 
  

 

iv. The error term U is generated byU P . The error term has a scalar covariance matrix 

property. 

v. The coefficients are set at 
0 1 2 3 4( , , , , ) (2,4,6,8,10)      , we also generate 

explanatory variables 1 2 3 4, , ,X X X X  from  uniformly distributed from 0 to 10 i.e. 

(0,10)iX U  for 1,2,3,4.i   

vi. Given 's , 
41 2 3( , , , )X X X X  andU , we then obtain y. 

vii. Finally, we apply Bayesian method to the model for different sample sizes 

25,50,100,150n   and 200 . 

The focus of the paper is on the estimation of parameters of linear regression model in the 

presence of heteroscedasticity of unknown form. However, the interest is on the following 

conditional distributions of  , h  and . Finally, we employed a Metropolis within Gibbs 

algorithm to draw posterior results for   and v . Inferences on parameters are based on 25000 

draws with 5000 burn-in are discarded. 

Table 4.1:Posterior mean for or  , and v , Std. devs. and HPDI’s for Nigeria Stock 
Exchange Data 

                                                                                                                             95%HPDI 

Parameters   Means                  Std. Dev.  2.5%  97.5% 

0
   22423.49   559.1550  [21524.31

 23332.55] 

1
   -0.35961   0.09998  [-0.52451   -

0.195729] 

 
2
                         -4108.37   316.0074  [-4632.937

 -3591.609] 

3
                        23361.13       1849.283  [20330.87

 26421.498] 

4
          440.8911   63.6679  [338.9292

 541.96880] 

h           1.668e-11   2.638e-09  [0.000000
 0.000000] 
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The Table above shows the posterior means for  , h and standard deviation and 95% 
credibility intervals 

 

Table 4.2:  Posterior mean for or  , and v , Std. devs. and HPDI’s for Nigeria Stock 
Exchange Daata 

                                                                                                                               95%HPDI 

       Parameters               Means                Std. Dev.  2.5% 
 97.5% 

0
   22425.48   554.08060 [21511.55 23343.98] 

1
   -0.3592    0.10160  [-0.526800 -

0.19310] 

2
                         -4106.66   318.1138  [-4634.366

 -3584.652] 

3
                        23343.230  1861.685  [20282.09 26420.85] 

4
          440.5800   62.2382  [338.0367

 542.942] 

v
          5.0100   1.0110  [3.348500 6.66360] 

The Table above shows the posterior means for  , v  , standard deviation and 95% 
credibility intervals 
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Table 4.3:   Posterior mean for or  , and v , Std. devs. and HPDI’s for simulated Daata 
n=25 

 

                                                                                                                               95%HPDI 

       Parameters               Means                Std. Dev.  2.5% 
 97.5% 

0
   0.0690   0.72140  [0.741300 4.238800] 

1
   3.8123    0.0718  [3.849800 4.17420] 

2
                         6.1602   0.0679  [5.764100 

 6.0721] 

3
                        8.2597   0.0759  [7.651900 7.99220] 

4
          10.1422   0.0759  [9.751500

 10.0860] 

v
          3.5062    0.9959  [1.448200 4.64250] 

Posterior mean for or  , and v , Std. devs. and HPDI’s for simulated Daata n=25 
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Table 4.4:  Posterior mean for or  , and v , Std. Devs. and HPDI’s for simulated Daata 
n=50 

                                                                                                                               95%HPDI 

       Parameters               Means                Std. Dev.  2.5% 
 97.5% 

0
   2.4641   0.5092  [1.621200 3.2960] 

1
   4.0299    0.1294  [3.817500 4.25180] 

2
                         5.9304   0.1287  [5.722100

 6.15450] 

3
                        7.8328   0.1604  [7.527700 8.1172] 

4
          9.9315   0.1266  [9.724100 10.1506] 

v
          3.5062   0.9886  [1.882800 5.1`542] 

The Table above shows the posterior means for  , v  standard deviation and 95% credibility 
intervals 
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Table 4.5: Posterior mean for or  , and v , Std. devs. and HPDI’s for Simulated Daata 
n=100 

 

                                                                                                                               95%HPDI 

       Parameters               Means                Std. Dev.  2.5% 
 97.5% 

0
   2.206   0.4788  [1.122000 3.812200] 

1
   4.0029    0.0531  [3.847600 4.192800] 

2
                         5.9743   0.0469  [5.753500

 6.08300] 

3
                        8.1095   0.0492  [7.660000 7.99090] 

4
          9.8708   0.0530  [9.756100 10.0889] 

v
          4.5069   1.0049  [2.347200 5.63930] 

The Table above shows the posterior means for  , v   , standard deviation and 95% 
credibility intervals 
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Table 4.6: Posterior mean for or  , and v , Std. devs. and HPDI’s for Simulated Daata 
n=150 

 

                                                                                                                               95%HPDI 

       Parameters               Means                Std. Dev.  2.5% 
 97.5% 

0
   1.6222   0.3104  [1.586200 3.31670] 

1
   3.8983    0.0333  [3.900700 4.4177] 

2
                         6.0513   0.0333  [5.783300

 6.31240] 

3
                        7.9800   0.0346  [7.677400 8.19390] 

4
          10.1063   0.0333  [9.789600

 10.29480] 

v
          4.9987   0.9978  [2.866700 6.166100] 

The Table above shows the posterior means for  , v  ,standard deviation and 95% 
credibility intervals 
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Table 4.7: Table 6: Posterior mean for or  , and v , Std. devs. and HPDI’s for Nigeria 
Stock Exchange Daata n=200 

 

                                                                                                                               95%HPDI 

       Parameters               Means                Std. Dev.  2.5% 
 97.5% 

0
   2.2934   0.3272  [1.536500 3.3918] 

1
   4.0567    0.0359  [3.875300 4.2817] 

2
                         5.9257   0.0360  [5.777900

 6.17760] 

3
                        7.9462   0.0351  [7.676800 8.06510] 

4
          10.0082   0.0317  [9.689800

 10.2804] 

v
          5.4976   0.9941  [3.332800 6.63870] 

The Table above shows the posterior means for  , v , standard deviation and 95% 
credibility intervals 
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DISCUSSION OF RESULTS 

This study employs method for Bayesian inference in a linear regression model when the 

assumption of normality is not tenable. The normal process was replaced with mixture of 

normal- Student-t linear regression model which is equivalent to treatment of heteroscedasticity 

of unknown form considered in Geweke (1993) and Koop (2003). The computations are based 

on Gibbs sampling and Metropolis-Hasting algorithms. We adopt Normal-Gamma prior for 

parameter   and precision, h  as suggested by the likelihood itself. It was shown in this 

methodology how to use non-hierarchical prior as against hierarchical prior for degrees-of-

freedom parameter of Student-t linear model.  

 

The conditional posterior distribution of , ,h   and v  were obtained using Gibbs sampling 

and Metropolis-Hasting algorithms as a relief to the difficulties of sampling directly from the 

intractable joint posterior distribution. More importantly, this methodology was applied to 

Nigeria Stock Exchange data and simulated data using different sample sizes 

25,50,100,150n   and 200.  We specify the initial values for parameter  to be 2,4,6,8 and 

10.  

 

The posterior mean for   in tables 4.3 to 4.7 are similar and consistent with the initial values 

specified and with the homoscedasticity version in tables 4.1 to 4.2 The estimated coefficients 

of the parameters approximately 95%  draws fall within each of the corresponding credible 

intervals. The histogram description of the posterior for degrees-of-freedom indicates the error 

exhibit substantial deviations from normality and all the posterior values obtained for degrees 

of freedom the parameter of Student-t linear model is in line with values in the ranges 3 to 7 as 

specified in the literature. 

 

CONCLUSION 

 

Generally, we inferred from the various results obtained that Bayesian estimation of parameters 

of a linear regression model when the assumption of normality is not tenable using mixture of 

normals which is also equivalent to treatment of heteroscedasticity of unknown form performed 

creditably well like its counterpart classical frequentist technique for modelling the linear 

regression. However, we also conclude that Bayesian estimation of parameters of linear 

regression model in the presence of heteroscedasticity of unknown form improve the precision 

of the estimates amongst others. 
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