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ABSTRACT: This research fit a univariate time series model to the major Airline Disasters in 

the world from 1960 through 2013. The Box-Jenkins Autoregressive Integrated Moving Average 

(ARIMA) model was estimated and the best fitting ARIMA model was used to obtain the post-

sample forecasts for five years. The fitted model was ARIMA (0,1,1) with Akaike Information 

Criteria (AIC) of 323.14, Normalized Bayesian Information Criteria (BIC) of 327.04, Stationary 

R2 of 0.348.This model was further validated by Ljung-Box test with no significant Autocorrelation 

between the residuals at different lag times and subsequently by white noise of residuals from the 

diagnostic checks performed which clearly portray randomness of the standard error of the 

residuals, no significant spike in the residual plots of ACF and PACF. The forecasts value 

indicates that Airline Disasters will increase slightly with almost equal number of cases for the 

next five years (2014-2018).  
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INTRODUCTION 

 

In the airline industry, Airline accidents are paramount issue since they have a significant impact 

on the demand for air travel, it significantly affects the finances of the Airlines, as a results of 

random occurrences of Airline accidents, Airline passengers switch for a safer Airline or choose 

an alternative mode of transportation. This issue has been examined among others by Rose, Nancy 

L. (1992), Borenstein and Zimmerman (1988), Bosch et al. (1998) 

 

Literature has shown that previous research on Airline accidents focused on the effect of fatal 

accident on the equity values of Airlines, for example, Borenstein and Zimmerman (1998), 

Mitchell and Maloney (1989), Bosch et al (1998). They also examined the impact of fatal 

accidents on Air travel demand. Their results showed that fatal accident have a significant 

negative effect on the stock value of the Airlines involved in such accidents. Other results showed 

that fatal accidents have no significant effect on the equity values of other Airlines. Mitchell and 

Maloney (1989), in their research, found out that equity value of the Airline involved in a fatal 

accidents falls only if the accidents is the fault of the company. Their findings further showed 
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that; if the financial market is perfect, the stock value of the Airline should have already 

considered the expected responses of the demand. Their findings may suggest that fatal accidents 

have little impact on the total demand for Air travel.  Borenstein and Zimmerman (1988), further 

examined the impact of fatal accidents on the demand for Air of crash Airlines remained largely 

unaffected by the fatal accidents prior to deregulation. 

 

 Airline accidents data can be viewed as a count data which has been primarily categorized as 

cross-sectional time series data, and panel count data. Over the past decades, Poisson and Negative 

Binomial (NB) models have been used widely to analyse cross-sectional and time series count 

data, and random effect and fixed effect Poisson and NB models have been used to analyse panel 

count data. However, in recent time, literature suggests that although the underlying distributional 

assumptions of these models are appropriate for cross-sectional count data, they are not capable of 

taking into account the effect of serial correlation often found in pure time series count data. Real-

valued time series models, such as the autoregressive integrated moving average (ARIMA) model, 

introduced by Box and Jenkins have been used in many applications over the last few decades. 

However, when modeling non-negative integer-valued data where the dataset is relatively low 

(less than 30 Observations) such as traffic accidents over time, Box and Jenkins models may be 

inappropriate. This is mainly due to the normality assumptions of error in the ARIMA model. Over 

the last few years, a new class of time series models known as integer-valued autoregressive 

(INAR) Poisson models has been studied by many authors. This case of model is particularly 

applicable to the analysis of time series count data as these models hold the properties of Poisson 

regression and able to deal with serial correlation, and therefore offers an alternative to the real-

valued time series models. 

 

Mohammed A. Quddus (2008), introduced the class of INAR models for the time series analysis 

of traffic accidents in Great Britain. He compared the performance of the INAR models with the 

class of Box and Jenkins real-valued models, his result suggest that the performance of these two 

classes of models is quite similar in terms of coefficients estimates and goodness of fit for the case 

of aggregated time series traffic accidents data. This is because the mean of the counts is high in 

which case the normal approximations and the ARIMA models may be satisfactory. 

 

 Mohammed A. Quddus (2008), in his work, developed accident prediction models of a highly 

aggregated time series process of annual road traffic fatalities in Great Britain. He employed a 

range of econometrics models such as ARIMA, NB, and INAR Poisson models. He investigated 

the performance of the fitted models. His result implied that the best accident prediction model for 

the aggregated time series count data was achieved when ARIMA model was used. This is due to 

the fact that this model is able to take into account both serial correlation and non-stationarity 

normally found in a time series dataset. 

 

This research will contribute to the literature by fitting a univariate time series ARIMA models 

for the number of cases of Airline disasters in the world from 1960 through 2013 and use the best 

fitted model to make forecast for five years. This long period was chosen because the number of 

cases is a count data which the number of observations must be large enough (at least 50-100 

observations) to meet-up the normality assumption of ARIMA model. Although, Airline 

accidents can be viewed with rare events, however, in this research observations were collected 
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annually from 1960 through 2013 in an ordinal basis and the interval over which the data was 

taken remain the same over time to generate the time series data used for this research. The 

objectives of this research are: (i) to evaluate the pattern and duration of the airline disasters in the 

world from 1960 through 2013 (ii) to fit a univariate time series ARIMA model for Airline 

disasters and (iii) use the fitted model to make five years forecast  

 

Methodology and Model Specification 

The model used in this study is the ARIMA proposed by Box and Jenkins (1976). The preliminary 

test for stationarity and seasonality of the data was conducted in which differences (d) as well as 

transformation were taken. After the stationarity of the series was attained, ACF and PACF of the 

stationary series are employed to select the order p and q of the ARIMA model. At this stage, 

different candidates’ model manifested and their parameters were estimated using the maximum 

likelihood method. Based on the model diagnostic tests and parsimony we obtained the best fitting 

ARIMA model. The Mathematical model for Auto Regressive of order p as well as that of Moving 

Average of order q are given respectively as  

𝑦𝑡 = 𝛷1𝑦𝑡−1 + 𝛷2𝑦𝑡−2 + ⋯ + 𝛷𝑝𝑦𝑡−𝑝 + 𝜖𝑡  (2.1) 

and             𝑦𝑡 =∈𝑡− 𝜃1 ∈𝑡−1− 𝜃2 ∈𝑡−2− ⋯ − 𝜃𝑞 ∈𝑡−𝑞   (2.2) 

The ARMA process of order (p,q) is written as         

𝑦𝑡 − 𝛷1𝑦𝑡−1 − 𝛷2𝑦𝑡−2 − ⋯ − 𝛷𝑝𝑦𝑡−𝑝 =∈𝑡− 𝛷1 ∈𝑡−1− 𝛷2 ∈𝑡−2− ⋯ − 𝛷𝑞 ∈𝑡−𝑞  (2.3) 

 

 

Method of Estimation: ARIMA Methodology 

 

The Box-Jenkins model building techniques consists of the following four steps: 

Step 1: Preliminary Transformation: If the data display characteristics violating the stationarity 

assumption, then it may be necessary to make a transformation so as to produce a series compatible 

with the assumption of stationarity. After appropriate transformation, if the sample autocorrelation 

function appears to be nonstationary, differencing may be carried out. 

 

Step 2: Identification: If ytis the stationary series obtained in step 1, the problem at 

theidentification stage is to find the most satisfactory ARMA (p,q) model to representyt 

Box – Jenkins(1976) determined the integer parameters (p,q) that govern the underlying 

processytby examiningthe autocorrelations function (ACF) and partial autocorrelations (PACF) of 

the stationary series, yt. (Salau, M.O.(1998) explained that it is better to entertain more than one 

structure for further analysis because the evidence examined at this stage does not point clearly in 

the direction of a single model.Salau, M.O. (1998) stated that this decision can be justified on the 

ground that the objective of the identification phase is not to rigidly select a single correct model 

but to narrow down the choice of possible models that will then besubjected to further examination. 

 

Step 3: Estimation of the model: This deals with estimation of the tentative ARIMA model 

identified in step 2. The estimation of the model parameters can be done by the conditional least 

squares and maximum likelihood. 
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Step 4: Diagnostic checking: Having chosen a particular ARIMA model, and having estimated its 

parameters, the adequacy of the model is checked by analyzing the residuals. If the residuals are 

white noise; we accept the model, else we go to step 1 again and start over. 

 

ANALYSIS AND RESULTS 

 

Time Series Graph of the Raw Data  
Time series plots which display observations on the y-axis against equally spaced time intervals 

on the x-axis used to evaluate patterns and behaviors in data over time for major Airlines disasters 

in the world is displayed in the Figure 1 below. The data used for this research was sourced from 

www.airdisasters.co.uk from 1960 through 2013. 

 
Figure1: Time Series Graph of Airline Disasters 1960 - 2013 

 

 

 

 

 

http://www.airdisasters.co.uk/
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Table1: Unit Root and Stationarity Tests of Airline Disasters 

Test type Test Statistics Lag Order p-value 

KPSS 0.3959 1 0.01 

PPT -40.6613 3 0.0789 

 

 
Fig 2:  FIRST Order Differenceof Major Airline Disasters 

 

 

Tab2 :  Unit Root and Stationarity Tests for the Differenced Major Airline Disasters  

Test type Test Statistic Lag order p-value 

KPSS 0.0487 1 0.100 

PPT -63.1537 3 0.01 
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Fig 3; Plots Of ACF and PACF Of Major Airline Disasters 
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Tab 3: ARIMA MODELS RESULTS 

ARIMA 

Structures 

Parameter 

Estimates 

p-value S.E Stationary 

R2 

Normalized 

BIC 

AIC 

ARIMA(0,1,1) MA1=0.835 <0.0001 0.134 0.348 327.04 323.14 

ARIMA(1,1,1) AR1=0.243 

MA1=0.995 

0.122 

0<0.0001 

0.154 

0.650 

0.346 330.10 324.25 

ARIMA(2,1,1) AR1=0.230 

AR2=0.067 

MA1=0.998 

0.153 

0.672 

<0.0001 

0.158 

0.157 

1.693 

0.325 334.02 326.22 

 

Tab 4: ARIMA (0,1,1) RESULTS 

Stationary R2 Normalized BIC AIC  

0.348 327.04 323.14  

Coefficient Estimate S.E t-value p-value 

MA 1 0.835 0.134 9.959 <0.0001 

Constant 0.092 0.132 0.696 0.490 

 Ljung-Box Test of ARIMA (0,1,1) 

Test Type Q-statistic Df p-value 

Ljung-Box 8.772 17 0.947 

 

 
Figure 4: Plot of Residual ACF and PACF of Major Airline Disasters 



International Journal of Mathematics and Statistics Studies 

Vol.4, No.6, pp.25-37, December 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

32 
ISSN 2053-2229 (Print), ISSN 2053-2210 (Online)  
 

 

Table 5: Forecasts results with the Fitted ARIMA (0,1,1)Model 

Year LCL FORECAST UCL 

2014 7.50 17.93 28.36 

2015 7.45 18.02 28.60 

2016 7.40 18.11 28.83 

2017 7.35 18.21 29.06 

2018 7.31 18.30 29.29 

 

 
Figure 5: The plot of the observed and forecast value of Airline Disasters 

 

 

 

DISCUSSION OF RESULTS 

 

The time series plots of the raw data in Figure 1 indicates clearly that the occurrence of major 

Airline Disasters in the world from 1960 through 2013 was not constant but rather varied from one 

year to the other with no systematically visible pattern, structural breaks, outliers, and no 

identifiable trend components in the time series data or non-monotonous (that is consistently 

increasing or decreasing). This behavior clearly revealed that non- stationarity was inherent in the 

data. The unit root tests provide a more formal approach in determining whether the series is 

stationary or not such as Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Phillips-Perron Unit 

Root Tests (PPT), thesetestswere carried out as shown in Table1. We employed the unit root testing 

procedures of Hamilton, J.D. (1994). The following hypotheses were tested:  

 

For KPSS 

H0: the series is stationary or has no unit root 
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Vs 

H1: the series is not stationary or has a unit root 

For PPT 

H0: the series is not stationary or has a unit root 

Vs 

H1: the series is stationary or has no unit root 

 

The decision rules involves accepting H0 where the p-value is greater than critical value of 0.05, 

and fails to reject if otherwise.  KPSS test statistic has a p-value less than the critical value of 0.05 

as presented in Table1, rejects the null hypothesis. The PPT has a p-value greater than 0.05 fails 

to reject the null hypothesis. It is clear from the time series plot of Airline Disasters and the unit 

root test that the series has to be transformed or differenced to stabilize or stationarize the data 

before its capability is assessed or improvements are initiated.  

 

The time series of the first differenced Figure2is stationary because the mean and variance were 

constant over time which means that the mean is exactly zero which confers a stationary series. 

The unit root test which is a formal test of stationary was performed as shown in Table2. 

Table2depicts the KPSS and the PPT for the first order differenced of the series, The KPSS test 

statistic has a p-value greater than the critical value of 0.05  do not reject the null hypothesis of 

having a level stationary series. Philips-Perron Test on the other hand has its p-values rejects the 

null hypothesis of a unit root at 5% significance level, since its p-values is less than 0.05. It 

therefore can be concluded that the time series plot of the first differenced indicates that the 

stationarity ofthe series was achieved at first differenced. 

 

 Figures3 comprises the plots of ACF and PACF. If the PACF display a sharp cutoff while the 

ACF decay more slowly (i.e., has significant spikes at higher lags), we say that the series display 

an AR signature, however, if the ACF display a sharp cutoff while the PACF decay more slowly, 

we say that the series display an MA signature. The lag at which the ACF cut off is the indicated 

number of MA terms. Based on Figure3 plot for major Airline disasters,, it can be seen that there 

is a slow decay in the PACF, but has a cut-off at lag 1, and lag2 suggesting AR(1) and AR(2) 

respectively, with a single negative significant spike around the ACF which displays a sharp cutoff 

at lag 1. This pattern is typical to a Moving Average (MA) process of order one. Hence a number 

of possible models were identified, these models are: ARIMA (1,1,1), ARIMA (2,1,1), and 

ARIMA (0,1,1). We proceeded to further statistically analyzed these three possible models and the 

results were summarized in table3 

 

Based on the parameters estimates in Table3 of major Airline disasters, the estimate of  all the AR 

models were found to be statistically insignificant because their p-values were all greater than 0.05 

Therefore the null hypothesis (Ho) of parameter are or equal zero is not rejected resulting in their 

removal from the model. The estimates of the MA model on the other hand, was found to be 

statistically significant because it p-value is less than 0.05 significance level. In addition, 

comparing the ARIMA (0,1,1) and the ARIMA (1,1,1), ARIMA (2,1,1)  models above in terms of 

the Stationary R2,  BIC, AIC  respectively, clearly prefers ARIMA (0,1,1) model since It has highest 

Stationary R2, smallest BIC, and smallest AIC. The summary of the parameter estimates of ARIMA 

(0,1,1) was stated in tab4. In conclusion, based on the parameter estimates in the Tab3 above, we 
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chose ARIMA( 0,1,1) as the best model for the Airline Disasters in the world. The model is thus 

given as: 

∇1Yt=0.092-0.835εt-1-εt⇒Yt- Yt-1=0.092-0.835 εt-1-εt     (5.1) 

This model is a special case of ARIMA model, which is called an Integrated Moving Average 

(IMA) Model. 

 

This model was diagnosed by Ljung-Box test and the p-value was quite large (greater than the 

usually chosen critical level (0.05), the test is not significant and therefore we do not reject the null 

hypothesis, thus the residuals appear to be uncorrelated. This indicates that the residuals of the 

fitted ARIMA (0,1,1) model is a white noise, and for that reason, the model fit the series quietly 

well, the parameter of the model are significant and the residuals are uncorrelated. 

 

The plots Fig4 comprises of the time plot of the residuals, ACF plot of the residuals and the PACF 

plot of the residuals respectively. The time plots of the residuals clearly showed that the residuals 

appear to be randomly scattered, no evidence exists that the error terms are correlated with one 

another as well as no evidence of existence of an outlier. The residuals or errors are therefore 

conceived of an independently identically distributed sequence with a constant variance and a zero 

mean. The ACF and the PACF plots of the residuals shows no evidence of a significant spike (the 

spikes are within the confidence limits) indicating that the residuals seems to be uncorrelated. 

Therefore, the ARIMA (0,1,1) model appears to fit well so we can use this model to make 

forecasts. . This also shows that the residuals of ARIMA (0,1,1) model is a white noise process. 

Thus the residual plots corroborate the conclusion of the Ljung-Box test.  

 

FORECASTING WITH THE FITTED MODEL 

Thus, in time series modeling, researchers are motivated by the desire to produce a forecast with 

minimum error as possible. In this section, we assessed the forecasting performance of Box-

Jenkins models. Literature has shownthat the Box-Jenkins method give better forecasts than the 

traditional econometric methods.  

  

Forecasting the Major Airline disasters in the world using a univariate Time Series Model, we 

computed one-step ahead forecasts for the fitted model, i.e. ARIMA (0,1,1). These forecasts and 

their 95% confidence interval i.e. Lower confidence limit (LCL) and upper confident limit (ULC) 

for five years (i.e. 2014 – 2018) were summarized in Table5, while Fig5 depicts the observed and 

forecast plot of Major Airline disasters in the world. The values of this forecasts shows that 

occurrences of airline disasters will slightly increase for the next five years. The forecast equation 

used is given as: 

 

Ẑt = 0.092+Zt-1-0.835εt-1         (6.1) 

 

 

CONCLUSIONS  

 

This research fit a univariate time series model to the major Airline Disasters in the world from 

1960 through 2013.Theevaluation ofpattern revealed that occurrences of Airline Disasters were 

not constant but rather varied from one year to the other with no systematically visible pattern. The 
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Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) model was estimated and the 

best fitted ARIMA model was used to obtain the post-sample forecasts for five years. The fitted 

model was ARIMA (0,1,1) with Normalized Bayesian Information Criteria (BIC) of 327.04, 

Akaike Information Criteria (AIC) of 323.14, and Stationary R2  of 0.348. .the model is given as: 

∇1Yt=0.092-0.835εt-1-εt⇒Yt- Yt-1=0.092-0.835 εt-1-εt     (7.1) 

 

This model was further validated by Ljung-Box test with no significant Autocorrelation between 

the residuals at different lag times and subsequently by white noise of residuals from the diagnostic 

checks performed which clearly portray randomness of the standard error of the residuals, no 

significant spike in the residual plots of ACF and PACF.  

 

The fitted model was used to obtain the post-sample forecast for five years. Weassessed the 

forecasting performance of Box-Jenkins models. We computed one-step ahead forecasts for the 

fitted mode, i.e. ARIMA (0,1,1). These forecasts and their 95% confidence interval i.e. Lower 

confidence limit (LCL) and upper confident limit (ULC) for five years (i.e. 2014 – 2018) indicates 

that Airline Disasters will increase slightly with almost equal number of cases for the next five 

years (2014-2018). 
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