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ABSTRACT: The behaviour of the distribution of goodness-of-fit tests is an important 

statistical problem especially in dichotomous data. Many authors, discussed methods to 

examine and compare between different goodness-of-fit tests, where they show the 

Information matrix test (IMT) and the Information Matrix Diagonal test (IMTDIAG) 

statistics have reasonable power even for a logistic model with very sparse data. However, 

many issues related to the elements of the log-likelihood functions and covariance matrix 

which may be quite close to zero, these elements leading to singularity and have an effect 

on the behaviour of the distribution of statistics. In this paper, we are interested to 

investigate the behaviour of the distribution of the $IMT$ statistic and IMTDIAG statistic, 

by using different levels of elements of the matrix. Moreover, the mean and the variance of 

the distribution of statistics should be examined, by the simulation to compare between 

different levels of elements of the matrix to find a reasonable new form of $IMT$ to avoid 

the Singularity Problem forecasting. 

KEYWORDS: Binary outcome, logistic model, goodness-of-fit tests, Information matrix 

test, Singularity Problem 

 

INTRODUCTION 

The Information Matrix test IMT and IMTDIAG are a tests for general misspecification, 

proposed by White (1982). The two well-known expressions for the information matrix 

coincide only if the correct model has been specified and the IMT takes advantage of this 

fact. The IMT and IMTDIAG avoid the grouping necessary for tests like the Hosmer-

Lemeshow test. Many researchers (Lancaster (1984), Newey (1985), Davidson and 

Mackinnon (1984) and Davidson and Mackinnon (1988)), pointed out the behaviour of the 

asymptotic distribution of IMT and IMTDIAG statistic. Chesher (1984), discussed the 

information matrix test and showed that it is useful with binary data models. Kuss (2002), 

made comparisons between some goodness-of-fit tests in logistic regression models with 

sparse data. The results of his simulation showed that the IMTDIAG has reasonable power 

compared with other tests. However, Kuss (2002), did not give information about the 

asymptotic distribution of the IMT and IMTDIAG statistic. Also he did not focus exclusive 

in the case mi = 1. Badi (2017), discussed and investigated the behavior of asymptotic 

distribution of goodness-of-fit tests which found some of goodness-of-fit tests affected by 

assumption on covariance matrix. Although the IMT and IMTDIAG are extensively 

discussed in the econometrics literature, it is less well known in the biostatistics literature. 
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There are several forms of the IMT, some of which give rather unstable behaviour. A 

complication in this analysis is that the test statistic is parameter dependent and must be 

evaluated at the maximum likelihood estimation (M LE) of the parameters of the fitted 

model. As such we need to the limiting values of these parameters under what may well be 

a wrong model. In fact, the previous work discussed by Badi (2021), which pointed out, 

the behaiviour of the dispersion Matrix of the IMT under wrong logistic model which 

computed empirical variance of IMT, the results appeared some elements of the covariance 

matrix leading to singularity. The idea of the information matrix test is to compare 

𝐸 (
−ꝺ2ℓ

ꝺɵꝺɵ𝑇
)   𝑎𝑛𝑑   𝐸 (

ꝺℓ

ꝺɵ
 
ꝺℓ

ꝺɵ𝑇
) , as these differ when the model is mis-specified but not when 

the model is correct. The idea of the IMTDIAG is to reduce the elements of the matrix, just 

consider the diagonal elements to avoid singularity problem. In this paper, we consider the 

mean and the variance of IMT and use different forms of IMT by delete elements which 

may be affected on the behavior of the distribution of statistic to find the best form of IMT 

to avoid the singularity problem. 

Fisher Information Matrix for Logistic Regression Model 

We consider binary regression, where the outcome for individual 𝑖, 𝑖 = 1,… . , 𝑛, is a 

random variable        𝑌𝑖 = 1𝜖 {0,1}.  Also Pr(𝑌𝑖|𝑥𝑖) = 𝜋𝑖 = 𝜋(𝛽
𝑇𝑥𝑖) where 𝑥𝑖 is a 𝑝 ×

1 dimensional vector of covariates and β is a p-dimensional vector of parameters. It will be 

convenient to write  𝛼𝑖 = 𝛽
𝑇𝑥𝑖 𝑎𝑛𝑑 ℓ𝑖 to be the contribution to the log-likelihood ℓ from 

unit 𝑖. We have: 

ℓ(𝛽) = ∑ ℓ𝑖(𝛽) = ∑ 𝑌𝑖 log 𝜋𝑖 + (1 − 𝑌𝑖) log(1 − 𝜋𝑖)
𝑛
𝑖=1

𝑛
𝑖=1   

The p-dimensional likelihood equations 𝜕ℓ 𝜕𝛽⁄ = 0    can be written: 

𝜕ℓ

𝜕𝛽
=∑[

(𝑌𝑖 − 𝜋𝑖)

𝜋𝑖(1 − 𝜋𝑖)
]

𝑛

𝑖=1

𝜕𝜋𝑖
𝜕𝑎𝑖

𝑥𝑖 = 0 

We can also derive the p × p matrix 𝜕
2ℓ
𝜕𝛽 𝜕𝛽𝑇⁄ = 0     as: 

∑[
(𝑌𝑖 − 𝜋𝑖)

𝜋𝑖(1 − 𝜋𝑖)
 
𝜕2𝜋𝑖
𝜕𝑎2𝑖

−
(𝑌𝑖 − 𝜋𝑖)

2

𝜋𝑖2(1 − 𝜋𝑖)2
(
𝜕𝜋𝑖
𝜕𝑎𝑖
)
2

]

𝑛

𝑖=1

𝑥𝑖𝑥𝑖
𝑇 

In case of logistic regression model, let us consider the standard logistic regression model 

and for simplicity consider the case 

𝜋𝑖 = 𝑒𝑥𝑝𝑖𝑡 (𝑎𝑖)  , 𝑖 = (1,2, … , 𝑛) 
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where  𝑎𝑖 = 𝛼 + 𝛽1𝑥1𝑖 . To some writing in the following we write 𝑥1𝑖  as 𝑥𝑖 the dimension 

of 𝑥𝑖 is clear from the context. The first derivatives of the log likelihood are 

𝜕ℓ

𝜕𝛼
=∑(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1

 ,    𝑎𝑛𝑑     
𝜕ℓ

𝜕𝛽1
=∑𝑥𝑖(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1

 

So, we then have 

  

𝜕2ℓ

𝜕𝛼2
=
𝜕

𝜕𝛼
[
𝜕ℓ

𝜕𝛼
] = −∑[

𝜕

𝜕𝛼
 (

𝑒𝑥𝑝 (𝛼 + 𝛽1𝑥𝑖)

1 + 𝑒𝑥𝑝 (𝛼 + 𝛽1𝑥𝑖)
) ] = −∑𝜋𝑖(1 − 𝜋𝑖).

𝑛

𝑖=1

𝑛

𝑖=1

 

Similarly, the second derivative with 𝛽1 is 

𝜕2ℓ

𝜕𝛽1
2 =∑𝑥𝑖 

2 𝜋𝑖(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1

 

And also, we have 

𝜕2ℓ

𝜕𝛼𝜕𝛽1
= −∑ 𝑥𝑖  𝜋𝑖(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1

 

Then, the Fisher’s information matrix in this case is 

 

𝐼𝑛 =

(

 
 
 

∑𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

∑ 𝑥𝑖  𝜋𝑖(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1

∑ 𝑥𝑖 𝜋𝑖(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1

∑𝑥𝑖 
2 𝜋𝑖(𝑦𝑖 − 𝜋𝑖)

𝑛

𝑖=1 )

 
 
 

 

it is evaluated at the M LE   �̂�. 

 

Information Matrix test (IMT) and (IMTDIAG) 

The idea of the IMT is to compare two different estimators of the information matrix to 

assess model fit. The IM T provides a unified framework for specification goodness of fit 

tests for a wide variety of distribution, multivariate or univariate, discrete or continuous. 

Lancaster (1984), pointed out, can be estimated the covariance matrix of IMT, dependent 

upon the IMT of White (1982), which can be estimated without the computation of analytic 
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third derivatives of the density function. Newey (1985), discussed that, the IMT is sensitive 

to non-normality. Moreover, he proposed a simple computation procedure which employs 

the outer product of the gradient (OP G) covariance matrix estimator of IMT statistic. 

However, Davidson and Mackinnon (1984), argue that, such a procedure maybe gives 

unreliable inferences, related to the stochastic nature of the covariance matrix estimator 

which uses high sample moments to estimate high population moments. Davidson and 

Mackinnon (1988), purposed a simple calculation procedure for the test statistic, for 

general binary data models, which employs the ML covariance matrix estimator instead 

the OP G estimator.  White (1982), introduced the test statistic as 

𝑑𝑔 = (𝑦, 𝜃) =
𝜕ℓ(𝑦)

𝜕𝜃𝑟
 
𝜕ℓ(𝑦)

𝜕𝜃𝑠
+
𝜕2ℓ(𝑦)

𝜕𝜃𝑟𝜕𝜃𝑠
  

Where 𝑔  ranges over appropriately chosen elements of the matrix and y will stand in place 

of the data:       𝑔 = 1, … , 𝑞 ≤
1

2
𝑝(𝑝 + 1), where 𝑝 = dim(𝜃) 𝑎𝑛𝑑 𝑟, 𝑠 = 1,… , 𝑝. The IMT 

statistic is based on the q-vector 

𝐷𝑔(𝜃𝑛) =
1

√𝑛
 ∑𝑑𝑔(𝑦𝑖, 𝜃𝑛) ;   1 ≤ 𝑔 ≤ 𝑞

𝑛

𝑖

 

Where 𝜃𝑛 is the M LE under ℓ (. ), where   𝑦1, 𝑦2, … , 𝑦𝑛   are the data. We assume that the 

𝑦𝑖 are independent and identically distribution. Badi (2021), discussed the covariance 

matrix of the IMT which described the behaiviour of the variance under missing covariate, 

and he computed a new form of Empirical Variance of the IMT. The results as below: We 

have that 

𝑑𝑔 = (𝑦𝑖 − 𝜋𝑖)(1 − 2𝜋𝑖) (

1
𝑥𝑖
𝑥𝑖
2
) and         ∇ℓ𝑖 = (𝑦𝑖 − 𝜋𝑖) (

1
𝑥𝑖
) 

 so, the variance is 

𝑉𝑎𝑟 (𝑑𝑔) = 𝐸(𝑑𝑔𝑑𝑔
𝑇) − 𝐸(𝑑𝑔)𝐸(𝑑𝑔

𝑇) 

The idea of the IMDIAG test and IM test are the same, the only difference is that for the 

former the elements of 𝑧𝑖 are just the diagonal elements of   𝑥𝑖𝑥𝑖 
𝑇, so 𝑧𝑖 is the 𝑝  dimensional 

vector:    𝑧𝑖
𝑇 = (𝑥𝑖1

2  , 𝑥𝑖2
2  , … , 𝑥𝑖𝑝

2 )      To explain the difference in size of vector 𝑧𝑖  in the 

two cases of IM test and IMDIAG test, let us consider a simple example. Suppose we have a 

symmetric matrix with elements  𝑥𝑖𝑥𝑖    
𝑇 and 3 × 3 dimension as:  

(

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

) 
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 where,  𝑥𝑟𝑠 = 𝑥𝑟𝑖𝑥𝑠𝑖. Then in the case of the IM test, the dimension of vector 𝑧𝑖
𝑇 is 1 × 6 

and elements are : 

𝑧𝑖
𝑇 = (𝑥11, 𝑥22, 𝑥33 ) 

The IM TDIAG Under missing covariates 

 

The behaviour of the IMT under missing covariates logistic model was discussed by Badi 

(2021), we consider the same idea for the calculation of IMTDIAG. We know that the 

IMTDIAG approach has the same idea as the Information matrix test, but compares just the 

diagonal elements of the two form of the information matrix. So, 𝑧𝑖  is (p+1)×1 -

dimensional vector of the diagonal elements  𝑥𝑖𝑥𝑖 
𝑇 matrix. Therefore, the IMTDIAG has the 

same behaviour of case IMT statistic, but the vector 𝑧𝑖  has different dimension and 

different elements. We consider IMTDIAG Under missing covariates so, we have true model 

with two covariates X1 and X2 and fitting the model with X1 then, 

𝑑𝑔(𝑦𝑖, 𝜃) = (𝑌𝑖 − 𝜋𝑖)(1 − 2𝜋𝑖) (
1
𝑋𝑖
2) 

Now, we consider the Variance of IMTDIAG for Logistic Regression Model, in this case we 

have: 

𝑑𝑔 = (𝑦𝑖 − 𝜋𝑖)(1 − 2𝜋𝑖) (
1
𝑥𝑖
2) 

So to calculate the variance V, we need to calculate 𝑉𝑎𝑟 (𝑑𝑔) and 𝐶𝑜𝑣(𝑑𝑔, ∇ℓ), we can see 

𝑉𝑎𝑟(∇ℓ) has the same expression which used in case of IMT. Firstly, we will work out 

𝑉𝑎𝑟 (𝑑𝑔), we have 

 

𝑑𝑑𝑇 = (𝑦 − 𝜋)2(1 − 2𝜋)2 (
1 𝑥𝑖

2

𝑥𝑖
2 𝑥𝑖

4) 

 

taking expectation EY |X we obtain 

 

𝐸(𝑑𝑑𝑇) = 𝐸𝑋 [(𝜋𝑡(1 − 2𝜋) + 𝜋
2)(1 − 2𝜋)2 ( 1 𝑋2

𝑋2 𝑋4
)] 

Secondly, we need to calculate 𝐶𝑜𝑣(𝑑𝑔, ∇ℓ) and 𝐸(∇ℓ) = 0 at the least false value, and 

we have 

𝐶𝑜𝑣(𝑑𝑔, ∇ℓ) = 𝐸(𝑑∇ ℓ
𝑇) = 𝐸𝑋 [(𝜋𝑡(1 − 2𝜋) + 𝜋

2)((1 − 2𝜋)) (
1 𝑋
𝑋2 𝑋3

)] 

 

 

 

Empirical Variance of IM TDIAG 

 

 

Now, we need calculate the estimated variance (�̂�) of 𝑑 as estimated to 𝑉(𝑑) . One 

candidate would be to compute 
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𝑑𝑖 = (𝑦𝑖 − �̂�𝑖)(1 − 2�̂�𝑖) (
1
𝑥𝑖
2)     𝑖 = 1,2, … , 𝑛 

and, 

∇ℓ𝑖 = (𝑦𝑖 − �̂�𝑖) (
1
𝑥𝑖
)     𝑖 = 1,2, … , 𝑛 

 

where, �̂�𝑖 is the fitted value from the model with just 𝑥1 . Now compute 

�̂�𝑛 =
1

𝑛
∑𝑑𝑑𝑇 − (

1

𝑛
∑𝑑𝑖

𝑛

𝑖=1

)(
1

𝑛
∑𝑑𝑖

𝑇

𝑛

𝑖=1

)

𝑛

𝑖=1

 

and 

 

�̂�𝑛 =
1

𝑛
∑(𝑦𝑖 − �̂�)

2 (
1 𝑥𝑖
𝑥𝑖 𝑥𝑖

2)

𝑛

𝑖=1

 

 

�̂�𝑛 =
1

𝑛
∑(𝑦𝑖 − �̂�)

2(1 − 2�̂�) (
1 𝑥𝑖
𝑥𝑖
2 𝑥𝑖

3)

𝑛

𝑖=1

 

Then, 

�̂� = �̂�𝑛 − �̂�𝑛�̂�𝑛
−1�̂�𝑛

𝑇 
Then use it as an estimate of V. As we computed the final form of the variance of IMTDIAG, 

we can see clearly it is dependent on E(d). The first two elements of E(d), which may be 

quite close to zero under true model and use the least false value which discussed and 

calculated by Matthews and Badi (2015) and Badi (2021), the  

 𝐸(𝜋𝑡 − 𝜋) = 𝐸((𝜋𝑡 − 𝜋)𝑋) = 

related to the log likelihood functions. So, these elements leading to singularity of the 

estimated covariance matrix, and has effect on the behaviour of the distribution of the IMT, 

this results discussed by Badi (2021). Although the IMTDIAG one of the approaches to avoid 

the singular problem which use just the diagonal elements, but this problem still present 

related to the first element of E(d). The important point here is the investigation a new form 

of IM T which deleted some elements of the E(d) to avoid the singularity problem. 

 

Information Matrix Test with Different Level of Elements (IMTDE)  

We know that the parameters estimators, under the null hypotheses 𝐻0 where there is no 

mis-specification, will be consistent, asymptotically normal and asymptotically efficient 

estimators. Under the alternative hypothesis 𝐻1 when the model is mis-specified, however, 

this estimator will be biased and inconsistent. The constructing of the IMT is based on �̂� , 
so, to develop the test the probability limit of 𝑑 required, and the mean and the variance of 

the asymptotic distribution of �̂�𝑇V̂−1�̂� should also be examined. For more information, 

about asymptotic distribution of statistics see Hausman (1978), Chesher (1983) and 

Davidson and Mackinnon (1992) which discussed a new different form of the information 

matrix test. Moreover, Stomberg and White (2000), provide considerable Monte Carlo 
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evidence on the finite sample performance of several alternative forms of IMT. Our 

purpose in this paper is to develop the form of IMT statistic which is asymptotically 

distributed 𝜒𝑅 
2 distribution under 𝐻0, when the model is correctly specified, and non- central 

𝜒𝑅 
2 (𝜆) distribution under 𝐻1 , when the model is mis-specified, in this case 𝑑~𝑁(𝜇, 𝑉), 

then 𝑑𝑇𝑉−1𝑑~𝜒2 and 

𝐸(𝑑𝑇𝑉−1𝑑) = 𝐸(𝑉−1𝑑𝑑𝑇) 

= 𝐸(𝑉−1(𝑑 − 𝜇)(𝑑 − 𝜇)𝑇) + 𝜇𝑇𝑉−1𝜇 = 𝑟𝑎𝑛𝑘(𝑉) + 𝜇𝑇𝑉−1𝜇 

Note that in this case 𝜒2 has mean 𝑅 + 𝜆 and variance 2(𝑅 + 2𝜆 ), where R is the rank of 

V and  
𝜆 = 𝜇𝑇𝑉−1𝜇. So, the main point is avoiding the singularity problem that discussed in 

previous sections, which is related with the log likelihood function. The basic idea is to 

consider a version of the IMT based on a reduced set of the elements of 𝑑 . Therefore, we 

removed the elements which are related to the log likelihood function. To illustrate our idea 

let us consider an example as we discussed in previous if we have fitted the model with 

one covariate then, we have 

𝐸(𝑑) = 𝐸𝑋 (

𝑑1
𝑑2
𝑑3

) = 𝐸𝑋 (

(𝜋𝑡 − 𝜋)(1 − 2𝜋)
(𝜋𝑡 − 𝜋)(1 − 2𝜋)𝑥𝑖
(𝜋𝑡 − 𝜋)(1 − 2𝜋)𝑥𝑖

2

) 

So, as we discussed we need to remove the elements 𝑑1 and 𝑑2 from 𝑑 , and then we will 

use only just 𝑑3 to compute the statistic. in this case 𝑑 = 𝑑3  and the statistic is  𝑛𝑑3
2𝑉−1. 

This approach we call the IMTDE, and we will evaluate the IMTDE statistic by simulation 

to examine the behaviour of its asymptotic distribution. 

Simulation Study 

In this part of simulation, we are interested to examine the asymptotic distribution of IMT 

statistic in case when all the elements of (d) are used, and also we need to investigate the 

properties of the IMTED and how the reduced elements improve and the asymptotic 

distribution of the IMTDE as chi-square distribution with mean [rank (V)] and variance [2 

rank (V)], if the fitted model is correct. Also, we investigate the asymptotic distribution of 

IMT under mis-specified model to focus on the behaviour of the asymptotic distribution of 

IMT, which is in this case is distributed non central chi-square distribution with mean is 

[rank (V) + λ] and variance [2 rank (V)+4 λ] where 𝜆 = 𝐸(𝑑)𝑇𝑉−1𝐸(𝑑).  Moreover, 

examine the effect of elements of variance matrix by likelihood function 

 

Design of Simulation 

This simulation designed to examine the asymptotic distribution of IM and IMTDE, we will 

consider two cases of simulation under true model and under mis-specified model. If we 

have true logistic regression model with two covariates 

 𝜋𝑖 = 𝑒𝑥𝑝𝑖𝑡(𝛼 + 𝛽1𝑥𝑖1 + 𝛽1𝑥𝑖2). 
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Firstly, we will focus on asymptotic distribution of IMT when the true model is fitted. 

Secondly, investigate the asymptotic distribution of IMT when the missing covariate 

logistic model has been fitted: 

𝜋𝑖 = 𝑒𝑥𝑝𝑖𝑡(𝛼 + 𝛽1𝑥𝑖1). 

 We consider 𝑥𝑖1 and 𝑥𝑖2 as a draw from bivariate normal distribution X ∼ N2 (0, 

Ω). 

  We consider the 2 × 2 covariance matrix is. 

Ω = 𝜎2 (
1 𝜌
𝜌 1

) 

- Use the variance 𝜎2 = 0.2  and ρ = 0.1. 

- We choose different component of parameters under fitted true model as (𝛼𝑡, 𝛽𝑡) : (0,1), 

(0.8, 0.5), (3.5,2.3). 

- Under fitted missing covariates model, we choose different component of parameters 𝛼𝑡= 

(0,0.9,0.7), 𝛽𝑡1=(1,1.3,1.5) and 𝛽𝑡2 =(0.6,1.2,2). 

 

RESULTS AND DISCUSSION 

Results and Discussion in Case of Correctly Specified Model:  

In this simulation we consider to compute the IM T with two cases of dispersion matrix V 

and VE to investigate the behavior of IM T and IMTDE under effects of theoretical variance 

which computed by alternative formulae and empirical variance, and comparing the results. 

The results of simulation reported in several tables. These tables show the mean and the 

variance of IMT and IMTDE by each found the theoretical and empirical variance. That is 

The IMTE denote to the statistic computed by empirical variance and IMTV denote to use 

theoretical variance, 

𝐼𝑀𝑇𝐸 = �̅�𝑇𝑣𝑎�̂�(�̅�)−1�̅� 

and 

𝐼𝑀𝑇𝑉 = �̅�𝑇𝑣𝑎𝑟(�̅�)−1�̅� 

where, �̂� = (�̂�1, �̂�2, �̂�3 )
𝑇  and  𝑑 = (𝑑1, 𝑑2, 𝑑3 )

𝑇  i.e. full matrix. Also, IMTE1 and 

IMTV1 denote to the statistic when, �̂� = (�̂�1, �̂�2)
𝑇  and 𝑑 = (𝑑1, 𝑑2 )

𝑇, i.e reduced the first 

element. Finally, IMTE2 and IMTV2 denoted to the statistic when, �̂� = (�̂�1)
𝑇, and 𝑑 =

(𝑑1 )
𝑇 , i.e. reduced the two first elements. Also, (𝛼𝑡) and (𝛽𝑡1) denote to the true 

parameters of πt and 𝑆. 𝐷(𝜋𝑡) is the standard deviation of 𝜋𝑡  over the distribution of the 

covariates. Table 1 and Table 2, shows the results in case of sample size n = 500 and n = 

5000 respectively. If we maintain the IMT is asymptotically distributed as 𝜒𝑅 
2  distribution, 

with 𝑑𝑓 = 𝑅 where, R is the rank of V , so, the statistics IMTE or IMTV should have mean 

R = 3 and variance 2R = 6, the statistics IMTE1 or IMTV1 has mean R = 2 and variance 
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2R = 4 and the last statistics, IMTE2 or IMTV2 have mean R = 1 and variance 2R = 2. 

Generally, we can see clearly, that the properties of χ2 distribution do not apply for both 

IMTE and IMTV for most sets of parameters and different sample sizes. The variance 

shows by far the more erratic behaviour. If we look at the second proposed statistic IMTE1 

or IMEV1, the properties of χ2 still do not apply, but, the departures are less than problem 

for IMTE, IMTV and it is looks better. The final proposed statistic, which is our proposed 

IMTDE, the new form of the IMT denoted in this simulation by IMTE2 and IMTV2, shows 

reasonable properties, the mean and the variance appeared very close to the properties of 

χ2 distribution across all cases. 

If we consider the results by the sample size, we can see that, when the sample size is 

larger, the results appear much better. In case of sample size n = 500, IMTDE in some cases 

appeared slightly affected, especially when using the empirical variance, and for small 

values of the S.D of (𝜋𝑡). If we make a comparison between the IMT, computed by 

empirical variance and theoretical variance, the results reported that, in large sample size 

n = 5000 have the same behaviour. Finally, we can say although there are slight effects in 

some cases related to the small value of 𝑆. 𝐷(𝜋𝑡), the new form of statistic IMTDE works 

well and has reasonable behaviour in most of the cases investigated. Moreover, we can say 

that the IMTDE statistic appeared to have an asymptotic χ2 distribution without strange 

behaviour, at least with request to the mean and variance. 

Table 1: Simulation results of mean and variance of IMT, when the model is correctly 

specified and df = 3, 2, 1 related to the three cases of IMT respectively, with sample size n 

= 500. 

 

 

 

 

 

 

 

𝜶𝒕 𝜷𝒕𝟏 𝝅𝒕 𝑺.𝑫𝝅𝒕 - IMT

E 

IMT

E1 

IMT

E2 

IMTV IMTV1 IMTV2 

0 1 0.4

8 

0.07 Mean 3.57 2.29 1.15 1874.6 1.99 1.01 

var 8.96 5.91 2.96 396296

9 

4.813 2.42 

0.

8 

0.

5 

0.4

8 

0.07 Mean 2.95 2.18 1.12 18028.

2 

3.23 0.99 

var 7.69 5.06 2.85 619603

9 

32.24 2.11 

0.02 Mean 12.06 4.04 2.05 20.45 2.21 1.17 
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3.

5 

2.

3 

0.9

5 
var 613.9 50.88 23.29 2581.0

1 

10.06 4.14 

 

Table 2: Simulation results of mean and variance of IMT, when the model is correctly 

specified and df = 3, 2, 1 related to the three cases of IMT respectively, with sample size n 

= 5000. 

𝜶𝒕 𝜷𝒕𝟏 𝝅𝒕 𝑺.𝑫𝝅𝒕 - IMT

E 

IMT

E1 

IMT

E2 

IMTV IMTV1 IMTV2 

0 1 0.5

0 

0.10 Mean 3.32 2.06 1.03 127.34 1.98 0.99 

var 8.54 4.48 2.27 104530 4.08 2.05 

0.

8 

0.

5 

0.7

0 

0.04 Mean 2.91 2.02 1.02 1626.3 2.17 1.04 

var 6.47 4.12 2.12 250533

9 

5.82 2.18 

3.

5 

2.

3 

0.9

5 

0.05 Mean 3.05 2.16 1.11 5.07 2.11 1.04 

var 13.55 5.30 2.91 56.48 5.10 2.28 

 

Results and Discussion in Case of Mis-specified Model: 

Now, we will discuss the results under 𝐻1, when the model is mis-specified. We used the 

same assumptions which we discussed in previous section, but in this case 𝛽𝑡2 ≠ 0 , and 

we choose different cases of parameters (𝛽𝑡2 = 0.6, 1.2, 2). Table 3 and Table 4 shows the 

results in two case of sample size n = 500 and n = 5000 respectively. 

We can see that, the tables reported, the IMTV and IMTE more strange behaviour due to 

overlap with elements of the log likelihood function and appeared are far away from the 

properties of χ2 distribution. The second proposed test, IMTV1 and IMT E1 appeared 

better with slightly effect especially with IMT E1, which is appeared more sensitive. The 

same behaviour which we found in case of the model under 𝐻0 , our proposed method 

IMTDE appeared more stable. However, the assumption that its distribution closely follows 

a non-central χ2 is not well supported. 

Table 3: Simulation results of mean and variance of IMT, when the model is mis-specified 

and df = 3, 2, 1 related to the three cases of IMT respectively, with sample size n = 500. 

𝜶𝒕 𝜷𝒕𝟏 𝜷𝒕𝟐 𝝅𝒕 𝑺.𝑫𝝅𝒕 - IMT

E 

IMT

E1 

IMT

E2 

IMTV IMTV1 IMTV2 

0 1 0.6 0.8

0 

0.07 Mean 4.72 2.49 1.17 84.71 2.01 0.973 

var 29.73 8.55 3.37 5223 5.63 1.96 

0.

8 

1.

3 

1.2 0.9

4 

0.05 Mean 10.94 3.82 1.79 35.70 2.17 0.96 

var 424.1 39.46 12.66 1102 11.31 2.00 

0.

7 

1.

5 

2 0.9

7 

0.04 Mean 18.85 5.18 2.36 23.96 2.56 0.98 

var 1905 115 26.32 3322 18.85 2.30 
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Table 4: Simulation results of mean and variance of IMT, when the model is mis-specified 

and df = 3, 2, 1 related to the three cases of IMT respectively, with sample size n = 5000. 

𝜶𝒕 𝜷𝒕𝟏 𝜷𝒕𝟐 𝝅𝒕 𝑺.𝑫𝝅𝒕 - IMT

E 

IMT

E1 

IMT

E2 

IMTV IMTV1 IMTV2 

0 1 0.6 0.5

0 

0.10 Mean 3.30 2.07 1.02 11.57 2.05 1.01 

var 8.90 4.45 2.12 618.9 4.35 2.02 

0.

8 

0.

5 

1.2 0.7

0 

0.04 Mean 3.67 2.02 1.12 6.14 1.83 0.99 

var 14.37 5.52 2.88 131.4 3.74 1.93 

3.

5 

2.

3 

2 0.9

5 

0.05 Mean 3.98 2.34 1.22 6.09 2.19 1.07 

var 20.10 6.68 3.65 98.12 5.68 2.18 

 

CONCLUSION 

The goal of the present work in this paper is to examine the singularity problem of IMT 

and investigate the distribution under correct and missing covariate logistic model. New 

form of the information matrix test IMTDE was examine by simulation which reduced the 

elements of d to remove overlap with elements of the log-likelihood function. In fact, 

although there is slightly different results when using the empirical covariance matrix with 

sample size n = 500, the IMTDE appeared reasonable asymptotic distribution behaviour in 

large sample size n = 5000 and the properties very close to the χ2 -distribution under 𝐻0. 

However, the form of the distribution under 𝐻1 is less clear. According to these results, it 

would be helpful to try an alternative approach. 
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