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ABSTRACT: A special technique that measures the uncertainties embedded in model selection 

processes is Bayesian Model Averaging (BMA) which depends on the appropriate choices of 

model and parameter priors. Inspite the importance of the parameter priors' specification in 

BMA, the existing parameter priors give exitremely low Posterior Model Probability (PMP). 

Therefore, this paper elicits modified g-parameter priors to improve the performance of the PMP 

and predictive ability of the model with an application to the Water Pollution of Asejire in 

Ibadan.  The modified g-parameter priors gj =  j

a

k

n
, 3,4,5a  established the consistency 

conditions and asymptotic properties using the models in the literature. The results show that the 

PMP with the best prior (gj=
5/jk n ) had the least standard deviations (0.0411 at n=100,000 and 

0:000 at n=1000) for models 1 & 2 respectively; and had the highest posterior means (0.9577 at 

n=100,000 and 1.000 at n=1000) for models 1 & 2 respectively. The point and overall predictive 

performances for the best prior were 2.357 at n=50 and 2.335 at n=100,000 when compared 

with the BMA Log Predictive Score threshold of 2.335. Applying this best g-parameter prior in 

modeling the Asejire river, it indicates that the dissolved solids (mg/l) and total solids (mg/l) are 

the most important pollutants in the river model with their PIP of 6.14% and 6.1% respectively.  

 

KEYWORDS: posterior inclusion probability (PIP), log-predictive score, model   uncertainty, 

dissolved solids  

 

 

INTRODUCTION 

Over the years in Nigeria, environmental problem is a great issue especially in the Southern part 

of the country where oil is spilled into water to cause water pollution. The people of the area are 

adversely affected with one environmental issue or the other. Previous researches on 

environment in Nigeria involve the classical approach. To this end, there is prior knowledge 

about challenges facing the community. I am now motivated to apply Bayesian Analysis through 

prior elicitation so as to form likelihood in such a way to give a compromise and update of 

knowledge in pattern of the Posterior using Bayesian Model Averaging (BMA). Bayesian Model 

Averaging (BMA) is a method that measures the uncertainties embedded in the model selection 

processes which depends on the appropriate choices of model and parameter priors. By 

averaging over many different competing models, BMA incorporates model uncertainty into 

conclusions about parameters and prediction. BMA approach allows the assessment of the 

predictive skill of a model. Akanbi, (2016) contributed that a composite inference that takes 

account of model uncertainty can be made in a simple and formally justifiable way. BMA is the 

method that has been proposed for handling some applications that are very large numbers of 
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models. In BMA, elicitation of priors can be of two forms which are: model and parameter 

priors. Model priors can be fixed, random, uniform or even custom prior inclusion probability 

while the parameter priors also knowns as Zellner can also be fixed, empirical Bayes (local) or 

hyper g prior. 

 

The Zellner g- structure in the parameter prior is expected to be as small as possible such that 

consistency of the true posterior model probability holds, Zellner, (1986). Fernandez, Ley and 

Steel (2001a) improved this work based on the priors, Akanbi, (2016) gave an extension in 

eliciting additional five g-parameter priors. Therefore this research is being undertaken so as to 

serve as an extension to the literatures on g-parameter prior elicitation in the BMA approach to 

normal linear regression model based on the increment in prior information with the number of 

regressors in the model. Hence, the modified parameter prior, gj = kj/n
a (a=3, 4 and 5) combined 

with the uniform model prior is elicited for this study. 

 

Bayesian Model Averaging Framework 

Suppose a linear model structure of n-independent random samples from a normal regression, 

with y being the dependent variable, X is the independent variable, 0 y  a constant, y the 

coefficients and  a normal iid error term with variance 
1

jh
 1(0, )jN h     with Model j (Mj); 

j=1,2,3,…,M.  

:j j jM y X     (1) 

If X contains K potential variables, this means estimating 2K variable combinations and thus 2K 

is given thus; 
K1, 2,...,M(M 2 );0 jj k K      (2) 

Where kj is the number of regressors for model j and K is the total number of regressors in the 

model. 

The model weights for this averaging stem from posterior model probabilities (PMP) that arise 

from Bayes; theorem: 

( / , ) ( )
( / , )

( / )

j j

j

P y M X P M
P M y X

P y X
    (3) 

The integrated likelihood of the model is given thus; 
K2

1

( / ) ( / , ) ( )b b

b

P y X P y M X P M


   (4) 

The marginal likelihood of the model is given thus; 

0 0 0
0

( / , ) ( / , , , ) ( , , / )d d dhj j j j j jP y M X P y h M P h M     


    (5) 

Thus, the model weighted posterior distribution for any statistic  . 
K2

1

( / , ) ( / , y, ) ( / X, y)j j j j

b

P y X P M X P M 


   (6) 
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BMA gets the Posterior Inclusion Probability (PIP) of an explanatory variable by summing the 

Posterior Model Probabilities across those models that contain the explanatory variable. By 

comparing two models (js) using Bayes Factor, then we have: 
( 1)/2

/2 /2
1

( ) ( )
1 1

; 1
11 1

( ) ( )
1 1

j s
n n

n n

n

s
k k s i i

j s s s
js j s

jj s
j i i

j j

g
y RX y y y y y

g g g g
B ifk k

gg g
y RX y y y y y

g g



 
                         

  

 (7) 

Priors in BMA 

The model prior P(Mj) is specified by the researcher which should reflect the prior belief about 

the model. Though there are other model priors such as binomial, beta-binomial and custom prior 

inclusion probabilities but for this research, the uniform model prior was used such that 

( ) 1jP M   in the below expression: 

K

1
( ) ; ( ) 0

2
j jP M P M    (8) 

And 

1

( ) 1
M

j

j

P M


   (9) 

 

Following the rule of thumb as Zellner, (1986) assumed that covariance of the prior should be 

proportional to covariance expression 
* * 1( )j jX X
 

 of the posterior derived from the data, we have: 

0( ) 1P     (10) 

The probability for precision is  

1
( )P h

h
   (11) 

Thus, the parameter prior is; 

 
1 * * 1( / ) (0 , [ ] )j K j j jP h N h g X X

 
  (12) 
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Table 1: Summary of all existing Elicited g-Parameter Priors 
Prior Specification Description Source 

I UIP Similar to the Unit Information Prior but with mean zero instead of 

MLE. 

FLS, (2001a) 

Ii gj = 1/n The prior contains information approximately equal to that contained in 

a single typical observation. The resulting PMP are closely 

approximated by the Schwarz Criterion, BIC 

Raftey, (1995) 

Iii gj = kj/n They assign more information to the prior as regressors increases in the 

model, i.e. they induce more shrinkage in φj (to the prior mean of zero) 

as the number of regressors grows 

FLS, (2001a) 

Iv 
gj = 

1/
/jk

K n  
The prior information decreases with the number of regressors in the 

model 

FLS, (2001a) 

V 
gj = 1/ n  

They chose a smaller asymptotic penalty term for large models than in 

Schwarz criterion 

FLS, (2001a) 

vi 
gj = j /k n  

They induced more shrinkage as the number of regressors grows. FLS, (2001a) 

vii 
gj = 

2

1/ (max[n,K ])  
They preferred prior of Fernandez, Ley an Steel (2001), a mix of Priors FLS, (2001a) 

viii 
gj = 

31/ (ln )n  
They choose this to mimic the Hannan-Quinn criterion with  

CHQ = 3 as n becomes large. 

Hannan-Quinn, 

(1979) 

Ix gj = jln( 1) / lnk n  This decreases slower with sample size to have asymptotic convergence 

of InBjs to the Hannan-Quinn criterion with CHQ = 1 

Hannan-Quinn, 

(1979) 

X 

gj = 

 

1/

1/
1

j

j

k

k








 

This was suggested by Laud and Ibrahim (1996) by using a natural 

conjugate prior structure, subjectively elicited through predictive 

implications. 

Laud and Ibrahim, 

(1996) 

xi 
gj = 

21/ k  
This prior was suggested by the Risk Inflation Criterion (RIC) of Foster 

and George (1994) 

Foster and 

George, (1994) 

xii 2

( , )N V    
Data dependent prior,  φ = 2.85, V =2.58, λ = 0.28; if the R2 of the full 

model is less than 0.9,  

and φ=9.2, V =0.2, λ=0.1684 if the R2 if the full model is greater than 

0.9. 

Raftey et al., 

(1997) 

xiii 
gj = 

21/ n  
Prior to capture information for fast increasing sample sizes. Olubusoye & 

Akanbi (2015) 

Xiv 
gj = j /k n  

Prior to capture information for reducing number of regressors in a 

model compared to the sample size. 

Akanbi (2016)  

Xv 
gj = 

2/jk n  
Prior to capture information for fast increasing sample sizes compared to 

the number of regressors in a model. 

Akanbi (2016) 

Xvi 
gj = 

2 /jk n  
Prior to capture information for fast increasing number of regressors in a 

model compared to the sample size. 

Akanbi (2016) 

Xvii 
gj = 

33 / (ln )n  
Prior to capture reduction of information by reducing the sample sizes 

but with a higher value of the numerator compared with the FLS. Its 

asymptotic convergence is Hannan-Quinn Criterion with level CHQ = 3 

Akanbi (2016) 

Source: Akanbi (2016) 

 

A Modified g-Parameter Prior 

g-class priors elicitation in BMA needs some basic conditions to follow such as non-negativity, 

Consistency and Asymptotic properties. The g specification should as well meet certain criteria 

for consistency of posterior model probabilities and the convergence of the Bayes factor as stated 

in Fernandez et al (2001a) (FLS). Though, this research is to improve the modified g- parameter 

priors (g = kj/n and kj/n
2) by FLS, (2001a) and Akanbi, (2016) respectively. The model Ms ∈ M 

generates the sample ‘y’, the data throughout this section.  
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1

s 0y ; (0, )
ni s s s s sX N h         (13) 

Thus: 

lim ( / , ) 1s
n

P p M y X


  and lim ( / , ) 0j
n

P p M y X


 ; j sM M    (14) 

Nothing that, the first probability limit is with the respect to the true model Ms. 

The g-parameter prior takes the functional form of: 

 

gj = 
1

2

( )

( )

jt k

t n
 with 2lim ( )

n
t n


    (15) 

Where, t1(kj) is the numerator function, in most cases a constant or number of regressors in the 

model, t2(n) is the denominator function, usually the sample size used for simulation procedure 

and 
2t (n) is the first order derivative of the function t2(n) 

Given, the assumption that Ms generates the Data, then if the following conditions 

(a) 2

2

( )
lim 0

( )n

t n

t n


  

(b) 
2

lim [0, )
( )n

n

t n
   

(c) 
1( )t  is an increasing function 

Now, we examine the conditions mentioned above with regard to our modified 

gj prior; 

 

gj =
1

2

( )
3,4,5

( )

j j

a

t k k
a

t n n
     (16) 

Then, the conditions are satisfied as established below. 

(a) 
1 1

2

2

( )
lim lim lim lim 0

( )

a a

a an n n n

t n an an n a

t n n n n

 

   


     

(b) 
2

lim lim 0 [0, )
( ) an n

n n

t n n 
     

 (c) t1 (−) = kj (constant) is a non decreasing function. 

 
Thus, the seven Asymptotic properties of the modified g- parameter prior are now derived as 

follows: 

Case i:  Distribution of the Modified Parameter Prior 
1

1 * *( / ) 0, ]jk j

j j ja

k
P h f N h X X

n





  
     

  (17) 

Case ii:  Posterior Probability of the Parameter using the Modified gj 

 3j 3 3( / y,M ) , , ( / , )jk

jj j jP f a V y M     (18) 

where 
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1

* * *

3 1 ;3 a 5
j

j j j ja

k
Mean X X X y

n




 
  

      
  

  (19) 

and  

 

11

* *

3 3

3

1 ( ) ( ) 1

( / , ) ; 2
2

n n

j j j

j j ji ia a a

j

j j

k k k
y RX y y y y y X X

n n k n
V y M a

a





      

          
        

 


  (20) 

Case iii: Marginal Likelihood of Model j using the Modified gj 

( 1)/2/2 1

1

1 ( ) ( )

( / y,X)

( ,X/ )

j

n n

nk

j j j

j i ia a a

j j

j M

j

j

k k k
y RX y y y y y

n k n n k
P M

P y M

 




    
               


  (21) 

 

Case iv:Bayes Factor for Models (j,s) using the Modified gj  
( 1)/2

1

/2 /2

1

1 ( ) ( )

1 ( ) ( )

j s
n n

n n

n

s s
k k s i ia a

j s s
js a a

j s j j

j i ia a

j

k k
y RX y y y y y

k k n n k
B

n k n k k k
y RX y y y y y

n n k






 
             

                      

 (22) 

 

Case v:Posterior Model Probability 

The Mean and Variance-covariance Matrix are given thus; 

Mean 
*( / , ) jjj j jE y M V X y 


    (23) 

Covariance  
2

( / , ) ; 2
2

j
jj j

d s
V y M V d

d
  


  (24) 

Where 
1

* *1
j

j j ja

k
V X X

n




  

   
  

  (25) 

And  
1

2

/
1 ( ) ( )

/ 1 n n

a

j j

j i ia a

j
j

k k n
y RX y y y y y

n k n
s

d



 
     

 
   (26) 

Where 
* * * 1 *( )j n j j j jRX I X X X X
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Case vi:Relationship of the Modified gj to Information Criteria 

Since t2(n) = na, then we have: 

ln
lim

ln ln( )
2 2

js

s j as

j

B
P

k ky RX yn
n

y RX y

  
   

  (27) 

ln
lim

js

js

B
P

S
  (28) 

 

Case vii: Predictive Distribution for Model using the Modified gj 

 
* *( / , , )E

w w jP y X D X = 

1 1

* * * * * 1 *

, , ,*
1

1 1
/ 1, 1 , 1 1 ( ) ( / ,

M
j j E

s w w j j w j j j w j ja a
j j

k kn
f y n y X X X X X P M D X

n q n n


 

   



     
                 

 )

 (29) 

 

Thus, the Log predictive score (LPS) is 

* * * *

1

1
LPS( , , ) ln ( / , , );

u
Q Q E

w j wj w j

j

X D X P y X D X D u
u 

      (30) 

Simulation and Analysis 

The concept of simulation experiment here are borrowed from the literature of Bayesian Model 

Averaging like Raftery, Madigan and Hoeting (1997); Fernadez et al., (2001a); Lee and Steel 

(2007a); Eicher et al., (2009) and Akanbi, (2016). According to their performed simulations, a 

design matrix Z for the regressors is an n×K, K = 15 is a fixed number of regressors for a sample 

size n, such that (z(1), z (2), · · · , z (10)) are drawn from N(0,1) and the subsequent five columns 

(z(11), · · · , z (15)) are built standard from;  

1 5( ,..., )z z (0.3 0.5 0.7 0.9 1.1 ) (1 1 1 1 1) +  ; (0,1)N  (31) 

Leading to matrix * * *

1 15X ( ,..., )X X which fulfills * 0I X  using the models: 

Model 1 
* * * * *

(1) (5) (7) (11) (13)4 2 1.5 0.5y X X X X X          (32) 

Model 2 (Null Model) 
21 , (0, 6.25)y N       (33) 

It is indicated that Model 1 is explained by a more or less realistic situation where one third of 

the regressors intervene, while Model 2 is an extreme case without any relationship between 

regressors and response.  In this analysis, a uniform prior is used over the model space M using 

MCMC of 50,000 recorded drawings after a burn-in 20,000 drawings and sample sizes of 

n=50,100,1000,10000,100000 with the model prior; 
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1
( ) ; 1,2,3,...,

2
j K

P M j K    (34) 

RESULTS AND DISCUSSIONS 

Convergence and Implementation 

To examine the convergence of the chain, the empirical (MCMC) and the exact (Bayes factor) 

are compared. Though, the results are reported based on Bayes factors, the chain is run long 

enough to have PMP almost equal to those exact results. An important tool to assess this 

convergence is the correlation coefficient between these two components (Bayes Factors and 

Empirical relative frequencies of model visited). 

Posterior Model Inference (PMI) 

The Posterior Probability assigned to the model that generated the data is one of the main 

indicators of performance of the Bayesian Methodology. It is expected that the true model should 

be high for small or moderate values of n that are likely to occur in practice. Generally, the 

posterior probability of this true model converges to 1 for large samples. The motive of any 

model used is to visit the only the true model which is one (1), meaning that; the smaller the 

visited model, the better it is. The Quartiles of the ratio between the posterior probability of the 

correct model and the highest posterior probability of the next model, in most cases this ratio 

tends to be far above unity to confirm the certainty of the true model.  

 

Table 2: Posterior Probability for Model 1 using the Modified g-Parameter Priors 
  n=50 n=100 n=1000 n=10000 n=100000 

PMI (1) Priors Mean SD Mean SD Mean SD Mean SD Mean SD 

PMP 3

j / nk  
0.5378 0.1994 0.7309 0.1985 0.8206 0.1645 0.8089 0.2002 0.9343 0.0631 

4

j / nk  
0.6095 0.2167 0.8205 0.1733 0.7958 0.1994 0.7432 0.1984 0.9460 0.0521 

5

j / nk  
0.6819 0.2150 0.8145 0.1836 0.7678 0.2116 0.8734 0.1657 0.9577 0.0411 

Model 

Visited 

3

j / nk  
4658.2 2214.7 2480.8 1840.8 1119.6 1289.1 1432.53 1634.8 321.61 524.14 

4

j / nk  
3420.6 2150.8 1388.5 1544.9 1618.7 1674.9 2060.61 1787.3 201.14 182.42 

5

j / nk  
2804.5 2130.0 1424.7 1499.1 2017.0 1874.0 1186.93 1595.9 46.31 132.18 

  Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 

Quartile 

Models 

Ratio 

3

j / nk  
0.45 0.87 0.61 0.96 0.74 0.95 0.7 0.98 0.75 0.99 

4

j / nk  
0.45 0.81 0.67 0.97 0.63 0.97 0.57 0.93 0.77 1.00 

5

j / nk  
0.49 0.89 0.65 0.97 0.57 0.96 0.77 0.99 0.8 6.3 

 

It can be affirmed from the table above that as sample size n increases, posterior probability of 

this true model converges to 1 whereby the best modified g-parameter prior (gj =
5/jk n ) was 
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concluded to be the best for the Model 1 with the estimated value of 0.9577  1. From the 

records means and standard deviations of the number of visited models in the model 1 with 50 ≤ 

n ≤ 100, 000 of sample sizes, it can be deduced that the g-parameter prior (gj =
5/jk n ) gives the 

best result for the Model 1 with the least value of 46.31 when n = 100, 000 (large). The Quartiles 

of ratio of the true model 1 posterior probability established the best prior with Q3 value of 6.3. 

 

Table 3: Posterior Probability for Model 2 using the Modified g-Parameter Priors 
  n=50 n=100 n=1000 n=10000 n=100000 

PMI (1) Priors Mean SD Mean SD Mean SD Mean SD Mean SD 

PMP 3

j / nk  0.8342 0.1086 0.9331 0.0467 0.9988 0.0016 0.9999 0.0003 1.000 0.000 

4

j / nk  0.9688 0.0438 0.9896 0.0363 0.9999 0.000 1.000 0.000 1.000 0.000 

5

j / nk  0.9963 0.0081 0.9991 0.0048 1.000 0.000 1.000 0.000 1.000 0.000 

Model 

Visited 

3

j / nk  1720.8 1149.1 671.58 471.43 32.93 15.37 13.69 3.94 12.68 2.93 

4

j / nk  316.58 419.85 121.01 340.47 13.43 1.99 12.73 1.48 11.28 1.62 

5

j / nk  60.01 83.1 24.72 43.97 12.81 1.52 12.71 1.46 10.41 1.32 

  Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 

Quartile 

Models 

Ratio 

3

j / nk  2.23 8.50 2.9 19.1 1.4 23.2 12.5 236.2 13.1 235.8 

4

j / nk  11.4 56.5 13.2 173.4 1.4 23.2 12.5 234.7 13.8 240.2 

5

j / nk  64.7 488 7.59 183.3 1.4 23.2 12.5 234.7 14.0 241 

 

It is indicated from the table above that as sample size n increases, posterior probability of this 

true model converges to 1 whereby the best g-parameter prior (gj =
5/jk n ) was concluded to be 

the best for the Model 2 with the estimated value of exactly 1 from when n = 1, 000 to n = 100, 

000. The means and the standard deviations of the number of visited models in the model 2 with 

50 ≤ n ≤ 100, 000 of sample sizes established that the g-parameter prior (gj =
5/jk n ) gives the 

best result for the Model 2 with the least value of 10.41 when n = 100, 000. From the quartiles of 

the ratio between the posterior probability of the correct model and the highest posterior 

probability of the next model in the Model 2, it is highly shown that all the g-parameter priors (gj 

= / a

jk n ; ∀a = 3, 4, 5) ascertained the true model 2 with the highest values range from Q3 = 8.5 

to Q3 = 241 when n = 50 to n = 100, 000 as it far above unity. 

 

Posterior Inclusion Probability (PIP) 

This section presents the means and standard deviations of the posterior probabilities of 

including each of the regressors (1, 5, 7, 11 and 13) as indicated in the above equation of model 

1. It is expected that as sample size (n) increases, those means of these regressors also tend to 1. 

It gives the degree of errors when the posterior model probability is allocated to the wrong 

sampling model.  
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Table 4: Means and S.Ds of the Posterior Probabilities of Model 1 Regressors with n = 50, 1000 and 100,000 
Priors  

gj =
3

j / nk  gj =
4

j / nk  gj =
5/jk n  

 

 

 

 

 

 

 

 

n=50 

Regressors Mean S.D Mean S.D Mean S.D 

*1 0.933 0.164 0.809 0.295 0.637 0.397 

2 0.017 0.164 0.003 0.295 0.001 0.397 

3 0.038 0.164 0.011 0.295 0.003 0.397 

4 0.060 0.164 0.024 0.295 0.010 0.397 

*5 0.07 0.164 0.012 0.295 0.001 0.397 

6 0.014 0.164 0.002 0.295 0.000 0.397 

*7 0.660 0.164 0.419 0.295 0.216 0.397 

8 0.013 0.164 0.002 0.295 0.000 0.397 

9 0.012 0.164 0.002 0.295 0.000 0.397 

10 0.021 0.164 0.003 0.295 0.000 0.397 

*11 0.637 0.164 0.554 0.295 0.426 0.397 

12 0.051 0.164 0.036 0.295 0.035 0.397 

*13 0.200 0.164 0.167 0.295 0.123 0.397 

14 0.040 0.164 0.027 0.295 0.024 0.397 

15 0.046 0.164 0.027 0.295 0.017 0.397 

 

 

 

 

 

 

 

 

n=1,000 

Regressors Mean S.D Mean S.D Mean S.D 

*1 0.992 0.045 0.936 0.183 0.743 0.354 

2 0.000 0.045 0.000 0.183 0.000 0.354 

3 0.001 0.045 0.000 0.183 0.000 0.354 

4 0.007 0.045 0.003 0.183 0.000 0.354 

*5 1.000 0.005 1.000 0.003 1.000 0.354 

6 0.000 0.045 0.000 0.183 0.000 0.354 

*7 0.771 0.005 1.000 0.003 1.000 0.354 

8 0.000 0.045 0.000 0.183 0.000 0.354 

9 0.000 0.045 0.000 0.183 0.000 0.354 

10 0.000 0.045 0.000 0.183 0.000 0.354 

*11 0.850 0.045 0.801 0.183 0.636 0.354 

12 0.008 0.045 0.011 0.183 0.004 0.354 

*13 1.000 0.005 1.000 0.003 0.093 0.354 

14 0.012 0.045 0.007 0.183 0.002 0.354 

15 0.007 0.045 0.017 0.183 0.002 0.354 

 

 

 

 

 

 

 

 

n=100,000 

Regressors Mean S.D Mean S.D Mean S.D 

*1 1.000 0.000 1.000 0.000 1.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.001 

3 0.000 0.000 0.000 0.000 0.000 0.001 

4 0.000 0.000 0.000 0.000 0.000 0.001 

*5 1.000 0.000 1.000 0.000 1.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 0.001 

*7 1.000 0.000 1.000 0.000 1.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.001 

9 0.000 0.000 0.000 0.000 0.000 0.001 

10 0.000 0.000 0.000 0.000 0.000 0.001 

*11 1.000 0.000 1.000 0.000 1.000 0.000 

12 0.000 0.000 0.000 0.000 0.000 0.001 

*13 1.000 0.000 1.000 0.000 1.000 0.000 

14 0.000 0.000 0.000 0.000 0.000 0.001 

15 0.000 0.000 0.000 0.000 0.000 0.001 

It is indicated from the Table above that regressors 1, 7 and 11 are close to 1 while other 

regressors 5 and 13 misbehaved with sample size n = 50 for the Model 1 of the three g-parameter 
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priors (gj = / a

jk n ; ∀a = 3, 4, 5); with sample size n = 1,000 for the Model 1, all regressors (1, 5, 

7, 11 and 13) are close to 1 but regressors (5, 7 and 13) are equally 1 in terms of mean of the 

three g-parameter priors (gj = / a

jk n ; ∀a = 3, 4, 5) and for n=100,000 it is shown that all the 

regressors (1, 5, 7, 11 and 13) are equal to 1 in terms of mean for the Model 1 of the three g-

parameter priors (gj = / a

jk n ; ∀a = 3, 4, 5). 

This establishes that highest sample size yields the best result in this case and hence, the best 

modified g -parameter prior is gj = 
5/jk n . 

Predictive Inference (PI)  

This section deals with predictive inference via the Log predictive Score (LPS) in terms of point 

and overall predictions for some samples based on the values of the regressors *

wX ; for model 1, 

w=19 different vectors of the K = 15 regressors. The below Table depicts the predictions via log 

predictive score (LPS) for model 1 via the 100 samples (y, X∗).  

Table 5: Medians of LPS ( * *, ,wX y X ): Point and Overall Predictions using the modified g-

parameter priors (gj = / a

jk n ; ∀a = 3, 4, 5) 

  n=50 n=100 n=1000 n=10,000 n=100,000 

 Priors *

minX  
*

minX  
*

minX  
*

minX  
*

minX  

 

Point 

Prediction 

gj =
3

j / nk  
2.30213 2.40094 2.24929 2.39517 2.42331 

gj =
4

j / nk  
2.35721 2.40094 2.24929 2.39517 2.42331 

gj =
5/jk n  

2.35721 2.40094 2.38751 2.40113 2.42331 

 

Overall 

Prediction 

gj =
3

j / nk  
2.213 2.521 2.187 2.433 2.331 

gj =
4

j / nk  
2.236 2.513 2.156 2.439 2.331 

gj =
5/jk n  

2.247 2.522 2.166 2.411 2.335 

 

It can be established from the above Table that the vector of regressors that lead to the minimum 

value for the mean (100 replication) of the sampling model 1 for the modified priors (gj = / a

jk n ; 

∀a = 3, 4, 5) are all close to the threshold of 2.335 as specified for BMA models, especially when 

n = 50. In the same vein, the above Table presents the overall predictive performance via the 



European Journal of Statistics and Probability 

Vol.8, No.1, pp, 43-59, April 2020  

Published by ECRTD-UK  

                                                                    Print ISSN: 2055-0154(Print), Online ISSN 2055-0162(Online) 

54 
 

LPS ( * *, ,wX y X ) for the 19 different values of *

wX  and the 100 replications of (y, X∗). Obviously, 

all the elicited g-parameter priors showed well predictive behaviour for n = 100, 000, but the best 

of all is the modified prior (gj = 
5/jk n ) with the exact value of threshold i.e. 2.335 as specified 

for BMA models. 

 

  

Figure 1: Point Prediction with the Modified g-priors for n=50 and n=100 
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Figure 2: Point Prediction with the Modified g-priors for n=1,000 and n=10,000 

 

Figure 3: Point Prediction with the Modified g-priors for n=100,000 

 

Application of BMA with the Best Modified g-Parameter Prior (gj=
5

j / nk ) to Water 

Pollution in Ibadan 

 

Water pollution is the contamination of water bodies, usually as a result of human activities. 

Water is considered polluted when unwanted materials with potentials to threaten human and 

other natural systems find their ways into water sources or reserved fresh water in homes or 

industries. Therefore, the BMA method is applied to the water pollutants and its pollution level 

to account for the uncertainties embedded in both the parameters and model using the best 

modified g-parameter prior, gj = 
5/jk n with the water pollution level model given below: 

WP L = 0  + 
1 DO + 2 T UR + 3 COL + 4 pH + 5 ALK + 6 TH + 7 CAH + 8 CL+ 9 FE + 

10 SI + 
11 SOL + 

12 DS + 
13 SS + 

14 COD +     (35) 

where   is a stochastic error term, independently and identically distributed as 
2(0, )N  with the 

variables Water Pollution level (WPL)as the regressand, Dissolved Oxygen (DO), Turbidity 

(TUR), Colour (COL), PH, Alkalinity (ALK), Total Hardness (TH), Calcium Hardness (CAH), 

Chloride (CL), Iron (FE), Silica (SI), Total Solids (SOL), Dissolved Solids (DS), Total 

Suspended Solids (SS) and Chemical Oxygen Demand (COD). 

Table 6: Posterior Probabilities of Including each of the Regressors (PIP) in the Water Pollution 

Level 
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Regressors PIP Post Mean Post S. D. Cond. P. Sign Index 

DS 0.0614 0.0476 0.1895 1 12 

Sol 0.0610 0.0475 0.1918 1 11 

Alk 0.0380 0.0220 0.1125 1 5 

CaH 0.0031 0.0048 0.0947 1 7 

Cl 0.0005 -0.0006 0.0887 0 8 

pH 0.0005 29.0408 7.9941 1 4 

TH 0.0003 0.9765 1.2543 1 6 

DO 0.0000 0.0000 0.0000 NA 1 

TUR 0.0000 0.0000 0.0000 NA 2 

Col 0.0000 0.0000 0.0000 NA 3 

Fe 0.0000 0.0000 0.0000 NA 9 

Si 0.0000 0.0000 0.0000 NA 10 

SS 0.0000 0.278 0.0000 NA 13 

COD 0.0000 0.000 0.0000 NA 14 

 

Table 6 presents the means and standard deviations of the posterior inclusion probabilities (PIP) 

of each of the regressors in the water pollution level. It is indicated that the dissolved solids (DS) 

with PIP of 6.14% is very important if modelling water pollution of Asejire River in Ibadan 

Table 7: The MCMC and the Exact Posterior probabilities for the First Best 5 Models 

Models PMP (Exact) PMP (MCMC) Predictors 

0001 0.0704614 0.0705800 DS 

0008 0.0608948 0.0513800 SOL 

0204 0.0350687 0.0426200 ALK and DS 

0004 0.0240914 0.0250200 DS 

0284 0.001588 0.0025200 DS, CaH, ALK 

 

It is shown from the table above that the best model Dissolved Solid (mg/l) has PMP of 7.0% 

among the 1186 models visited. 
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Figure 4: Posterior Model Probabilities and Model Size  

 

It can be observed from the above figure that PMP (Exact) is closed to PMP (MCMC) due to the 

statistics of shrinkage factor which is exactly 1. 
 

 

 

 

 

Figure 5: Marginal Density for Dissolved Solid 
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From the above figure, DS appeared as the most important pollutant in the water pollution model 

with PIP of 6.14%. 

 

Figure 6: Cumulative Model Probabilities with the Signs of their Regressors 
 

Figure 6 shows the cumulative model inclusion probabilities based on best 14 models. It also 

depicts the inclusion of a regressor with its sign in the model selection process. This image plot 

is based on the Bayes factor of the MC3 simulator. The blue colour means a positive sign. It is 

confirmed that the selected best model with PMP of 97% includes only the dissolved solids (DS). 

CONCLUSION 
 

In this paper, the elicited modified g priors need only the choice of one scalar hyper parameter 

known g-class. The consistencies conditions and asymptotic properties for the modified g-

parameter priors were derived. The empirical results on both posterior model and predictive 

inferences indicate that the modified prior gj = 
5/jk n was the best out of the three g modified 

parameter priors considered in the BMA technique. This implies that, the higher the power of the 

sample size (n), the more efficient and the g parameter prior. The application of the best g prior 

to modelling Asejire River shows that the effect of dissolved solids (mg/l) and total solids (mg/l) 

as water pollutants in Asejire River, Ibadan, Oyo State are very important. Thus, the two water 

pollutants are recommended in modelling Asejire River and also to used the elicited modified 

parameter prior, gj=
5/jk n  combined with a uniform model prior for model selection or Bayesian 

model averaging in Asojire River model whenever informative prior is not available for both 

small and large samples. 
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