
International Journal of Mathematics and Statistics Studies 

Vol.4, No.4, pp.21-31, August 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

21 

APPLICATION OF NEWTON RAPHSON METHOD TO NON – LINEAR MODELS 

Bakari H.R, Adegoke T.M, and Yahya A.M 

Department of Mathematics and Statistics, University of Maiduguri, Nigeria 

 

ABSTRACT: Maximum likelihood estimation is a popular parameter estimation procedure 

however parameters may not be estimable in closed form. In this work, the maximum likelihood 

estimates from different distributions were obtained after the failure of the likelihood approach. 

The targeted models are Non Linear models with an application to a Logistic regression model. 

Although, obtaining the estimate of parameters for non linear models cannot be easily obtained 

directly. That is the solution is intractable. So there is a need to look else where, so as to obtain 

the solutions . In this work, R statistical package was used in performing the analysis. The 

result shows that convergence was attained at the 18th iteration out of 21. This also provides 

the values and the maximum estimate for β0 and β1. 
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INTRODUCTION 

The problem of estimation is to devise a means of using sample observations to construct good 

estimates of one or more of the parameters. It is expected that the ”information” in the sample 

concerning those parameters will make an estimate based on the sample generally better than 

a sheer guess. How well the parameter is approximated can depend on the method, the type of 

data and other factors. The method of maximum likelihood corresponds to many well-known 

estimation methods in statistics (such as; maximum likelihood, moments, least squares, 

bayesian estimation etc) and finding particular parametric values that make the observed 

results the most probable (given the model). But in this study we are concentrating on 

maximum likelihood. In statistics, maximum-likelihood estimation (MLE) is a method of 

estimating the parameters of a statistical model. When applied to a data set and given a 

statistical model, maximum-likelihood estimation provides estimates for the model’s 

parameters. But with more complicated models, maximum likelihood alone may not result in 

a closed form solution. Analytic expressions for maximum likelihood estimators in complex 

models are usually not easily available, and numerical methods are needed. Newton’s method 

can be used to find solutions when no closed form exists and it can converge quickly, 

especially if the initial value of the iteration is close to the actual solution. Here the importance 

of an efficient estimator is reinforced since the platykurtic nature of an inefficient estimator 

diminishes the ability of the algorithm to converge. However, with the rapid increase of 

computer speed, maximum likelihood estimation has become easier and has increased in 

popularity. In this paper, interest is mainly focused on the estimation of parameters of some 

distributions which does not have a closed form solution. 

 

LITERATURE REVIEW 

Maximum-likelihood estimation was recommended, analyzed (with flawed attempts at proofs) 

and vastly popularized by R. A. Fisher between 1912 and 1922 Pfanzagl (1994)[?]. Although 

it had been used earlier by Gauss, Laplace, Thiele, and F. Y. Edgeworth (September 1908 , 
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December 1908). Reviews of the development of maximum likelihood have been provided by 

a number of authors ( Savage (1976) [?], Pratt (1976) [?], Stigler (1978 [?], 1986 [?], 1999 

[?]) and 

Aldrich (1997) [?]). Much of the theory of maximum-likelihood estimation was first developed 

for Bayesian statistics, and then simplified by later authors Pfanzagl (1994)[?]. Efron (1982) 

[?] explained the method of maximum likelihood estimation along with the properties of the 

estimator. According to Aldrich (1997) [?], the making of maximum likelihood was one of the 

most important developments in 20th century statistics. The method of moment (MM) is also 

a commonly used method of estimation. In this method, the sample moments are assumed to 

be estimates of population moments and thus moment estimates for the unknown values of 

population parameters are found ( Lehman and Casella, 1998 [?]). Negative integer moments 

are useful in applications in several contexts, notably in life testing problems. Bock et al. 

(1984)[?] illustrated the examples of their use in the evaluation of a variety of estimators. With 

the particular reference to Chi-square distribution, in the inverse regression problem, Oman 

(1985)[?] gave an exact formula for the mean squared error of Kruutchkoffs inverse estimator 

by use of negative integer moments of the noncentral Chi-squared variable. 

Objectives 

The study is aimed at applying Newton Raphson method to non-linear models with a view to 

obtain of obtaining a maximum likelihood estimates for logistic regression models. 

 

METHODOLOGY 

Maximum Likelihood 

The likelihood function of the random samples s the product of their respective probability 

distributions 

  (1) 

To maximize the natural logarithm of the likelihood with respect to φ and equating to zero gives 

the score function as 

  (2) 

if (2) cannot be solve analytically then we need to adopt an iterative method to estimate the 

parameters of the distribution. 

  (3) 

Newton Raphson Method 

NEWTON’S RULE will be adopted. The optimum of the approximation (which is easy to 

calculate) gives a guess of the optimum for the actual function. If this guess is not adequately 
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close to the optimum, a new approximation is computed and the process repeated. The Newton 

Rapson Method can be stated as 

  (4) 

The one-parameter situation 

The derivative of the log-likelihood, 

s(φ;X) = lik0(φ,X) (5) 

is usually named the score function. Note that the score function is a random variable since it 

depends on the random observations xi. It can be expressed by the likelihood function itself 

through 

;X) (6) 

 

which is obtained from equation (6) by ordinary rules on differentiation. If l(φ;X) is a smooth 

function in φ, the likelihood should have a derivative equal to zero at the max-point. A 

common approach in order to find maximum points is therefore to solve the scoring equation 

s(φˆ;X) = 0 (7) 

In order to evaluate if the solution is actually a maximum point, the second derivative must be 

inspected. As is apparent from equation (6), s(φ;X) is a stochastic quantity. An important 

property of the scoring function is that if X has probability density f(X;φ), then 

E[s(φ;X)] = 0 

. A solution of the scoring equation can therefore be seen as a value of hatφ such that the 

scoring function is equal to its expectation. The variability of S(φ;X) reflects the uncertainty 

involved in estimating φ. The variance of S is called the Fisher information (sometimes it is 

also called the expected information). The Fisher information I(φ) of an experiment can be 

written as 

I(φ) = V ar[s(φ;X)] = E[l(φ)] (8) 

The multi-parameter situation 

Assume Φ = (φ1,...,φp)
T is a vector of p, say, unknown parameters. The derivative of the log-

likelihood, still named the score function, now is a vector: 

;X) (9) 

The ith element of the vector S(φ;X),Si(φ;X), is the partial derivative of lik(φ;X) with respect to 

φi. A more mathematically correct way of expressing S(φ;X) would be ),but we 
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will use the simpler form lik(φ;X). As for the one-parameter case, each si(φ;X) has expectation 

zero. Finding the MLE by solving the scoring equations 

s(φˆ;X) = 0 (10) 

now result in a set of p equations with p unknowns. The expected information is now 

generalized to be a matrix I(Φ) with the (i, j)th entry given by 

  (11) 

Here the second equality can be proven by a simple generalization of the argument in the one-

parameter case. In the multi-parameter situation we usually name I(Φ) by the expected 

information matrix or the Fisher information matrix. An important property of I(Φ) is that it 

is always positive semi-definite. Where matrix I is positive semi-definite if aIa ≥ 0 for all 

vectors a. Note that I(Φ) depends on the unknown quantity Φ. Common practice is to insert 

the estimated value Φˆ for Φ giving an estimate I(Φ)ˆ of I(Φ). A further complication is that 

the expectations in (12) are not always possible to compute. Then an alternative is to use the 

observed information matrix J(Φ) with (i, j)th entry given by 

  (12) 

As for the expected information matrix, an estimate Φˆ needs to be inserted for Φ in order to 

evaluate J(Φ). The ith diagonal element of J1(Φ) can then be used as an approximation for the 

variance of φˆ
i instead of the ith diagonal element of I1(Φ). Both these approximations will 

equally be valid in the sense that as the number of observations increases, the approximation 

error will decrease to zero. If possible to calculate, the expected information is preferable, 

since the observed information in some cases can be unstable. Note that in many standard 

models used in statistics, I(Φ) = J(Φ). 

Algorithm of Newton Raphson Method 

Consider the newton raphson iteration given as 

  (13) 

Repacing X with φ , Xn+1 with φ1, f(x) with s(φ;X) and f0(x) with J(φ) in equation (14) we will 

obtain the algorithm for Newton Raphson Method 

  (14) 

Non-Linear Regression 

The general equation of a non-linear regression model can be expressed as 

  (15) 

where xi is a vector of explanatory variables, β is a p-dimensional vector of unknown regression 

parameters and i is a noise term. We will make the standard assumptions about these noise 
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terms: 

 

 

 are 

uncorrelated  are 

normally distributed 

Multiple linear regression is the special case where 

f(xi,β) = β + β1xi,1 + ... + βp−1xi,p−1 (16) 

We will however in this work allow for nonlinear g functions. Assume that {(yi,xi),i = 1,2,...,n} 

are observed (yi is the observed value of Yi). Under the assumptions above, the likelihood 

function is given by 

  (17) 

while the log-likelihood is 

  (18) 

not possible to obtain, and numerical methods have to be applied. For notational simplicity, 

dene 

  (19) 

and 

  (20) 

The partial derivatives of l(β,σ2) with respect to β and σ2 are then given by the score function 

s(β,σ2) with element 
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  (21) 

and the observed information matrix j(β,σ2) with elements 

  (22) 

  (23) 

  (24) 

where k, l = 1, ..., p. These quantities can be directly imputed into the general Newton Raphson 

algorithm ??. A more efficient algorithm can be obtained by utilizing that for given β, an 

analytical expression for the maximum likelihood estimate σˆ2 for σ2 can be obtained. From ?? 

  (25) 

and the solution σˆ2 to the equation = 0 is given by 

  (26) 

Logistic Regression 

Suppose that (yi|xi)i = 1,...,n represent a random sample from the Binomial distribution. 

Then, 

  (27) 

(28) 

By making the usual assumption that all observations are independent, the likelihood function 

becomes 
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n 

L(β) = Yp(xi,β)yi(1 − p(xi,β))1−yi 

i=1 

The log-likelihood can be express as 

(29) 

  (30) 

Since, 

  (31) 

then 

  (32) 

Also, 

  (33) 

The log-likelihood can now be expressed as 

  (34) 

and then calculate the gradient and the Hessian of l(β) with respect to β directly using chain 

rule j = 0; 1 to calculate the partial from the original model as follows: 

From equation 33 

  (35) 

So, after substitution, it follows that: 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.4, No.4, pp.21-31, August 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

28 

  (36) 

(37) 

(38) 

(39) 

(40) 

(41) 

  

(42) 

(43) 

(44) 

(45) 

In the following implementations of Newton-Raphson, a negative sign is inserted in front of 

the log likelihood, the gradient, and the hessian, as these routines are constructed for 

minimizing nonlinear functions. 

To illustrate logistic regression, we will analyze the data given in Table ?? below . The table 

contain a data set is given where the response is whether a beetle given a dose of poison has 

died or not, i.e., a binary response. The explanatory variable is the amount of poison. The data 

are grouped since many beetles are given the same dose. 
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Table 1: The mortality of beetles against dose of poison 

Dose Number of Insect Number Killed 

1.6907 59 6 

1.7242 60 13 

1.7552 62 18 

1.7842 56 28 

1.8113 63 52 

1.8369 59 53 

1.8610 62 61 

1.8839 60 60 

Implementation of Numerical Method to Logistic Regression Model 

Table 2 below gives the the summary of the iteration result from the analysis performed: 

$minimum 

[1] 18.71513 

$estimate 

[1] -60.71786 34.27055 

$gradient 

Table 2: Implementation of Newton Raphson Method with real life data 

Interation β0 β1 Gradient β0 Gradient β1 Function 

0 2 1 179.3920 311.6497 553.8446 

1 0.8662236 -0.9696594 -149.2270 -278.27354 264.512 

2 1.3813254 -

0.04068787 

87.65981 147.04080 196.5479 

3 1.1854755 -0.3589378 13.07235 13.09508 159.6459 

4 1.1475771 -0.3880613 2.875724 -5.212983 159.2272 

5 1.132853 -0.377521 3.354139 -4.349829 159.1309 

6 -

0.3256731 

0.5412218 24.48201 33.95548 152.4527 

7 -3.281333 2.289232 43.05080 67.96144 141.7666 

8 -11.99262 7.29436 64.65333 108.43084 114.4357 

9 -28.44790 16.58482 66.02012 113.63712 71.60655 

10 -48.36249 27.69799 44.05701 77.1071 36.39559 
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11 -59.49891 33.83316 25.61607 45.36968 24.41009 

12 -64.54647 36.54798 12.15607 21.83472 20.35624 

13 -65.01072 36.72506 3.952493 7.294694 19.19656 

14 -63.32287 35.73540 -

0.0009565687 

0.1641202589 18.83827 

15 -61.42613 34.66077 -0.8270989 -1.4254833 18.72998 

16 -60.74230 3.171 -0.2219827 -0.3933852 18.71557 

17 -

60.071244 

34.26740 -0.009238042 -0.016760403 18.71514 

18 -60.71714 34.27013 -4.215717e-05 8.400441e-05 18.71513 

19 -60.71727 34.27021 7.017393e-07 1.206174e-06 18.71513 

20 -60.71786 34.27055 -7.932261e-06 -1.403221e-

05 

18.71513 

21 -60.71786 34.27055 -4.71224e-09 -7.985442e-

09 

18.71513 

[1] -4.717224e-09 -7.985442e-09 

$hessian 

[,1] [ , 2] 

[1,] 58.48343 103.9776 

[2,] 103.97757 184.9640 

$code 

[1] 1 

$iterations 

[1] 21 

 

RESULTS AND CONCLUSION 

In this work, we consider the use of Newton Raphson method to obtain the estimate of 

parameters for a logistic regression model 

From the result obtained from applying newton raphson method to obtaining a maximum 

likelihood estimates for loggistic regression model. A total of 21 iterations were performed to 

obtain the maximum likelihood estimate. Convergence was reached at the 18th returning 

18.71513 as the value of the log-likelihood and the value of the estimate which maximizes the 

function is -60.71786 with gradient −4.717224×10−9 for β0 and 34.2705 as the value of the 

estimate which maximizes the function with gradient −7.985442×10−9 for β1 . This means for 
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every unit change in the dosage of poison, the log odd for a insect to die increase by 34.27 . 

The hessian matrix which is the value of the second derivativesand is also known as variance-

covariance matrix is 

  

58.8343 103.9776 

  (46) 

103.97757 184.9640 

Since the hessian matrix is positive and its determinant is also greather than zero, then we can 

conclude that the estimates obtained are local minimum. 
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