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ABSTRACT: Integral transform methods are very useful for solving problems in ordinary 

and partial differential equations. Among the integral transform methods, the Laplace 

transform has been applied to solve a lot of initial and boundary value problems in science 

and engineering. In this paper, the Laplace transform method was used for solving general 

wave equations on transmission lines. The model of general wave equations on transmission 

lines resulted into initial value hyperbolic second order partial differential equation which 

was transformed into ordinary differential equation by using the Laplace transform method. 

The method of variation of parameters and the convolution theorem of Laplace 

transformation was now applied to get the final solution to the problem. 

KEYWORDS: Wave equations, Laplace Transform, Lossy transmission Line, Lossless 

Propagation, Variation of Parameters. 

 

INTRODUCTION 

The mathematical model for a lossy transmission line contains all the primary constants or 

parameters of the line. These include the resistance (R), the conductance (G), the inductance 

(L) and the capacitance (C). Values of all these constants are specified per unit length. But for 

a lossless propagation, all mechanism that would cause losses to occur has negligible effect. 

Therefore, in the model for lossless propagation, values of resistance (R) and conductance 

(G) that can make losses to occur are set to zero. In this paper, the Laplace transform method 

was applied to solve the general wave equations on lossy and lossless transmission lines. This 

Laplace transform method owes its present form to a symbolic method developed by Oliver 

Heaviside. It provides powerful tools in numerous fields of science, engineering and 

technology where the knowledge of the system’s transfer function is essential, Stroud and 

Dexter (2003). A lot of research work had been carried out on electric power transmission 

lines. Paul and Andie (2010) worked on characterization of losses on lossy transmission lines, 

Youssef and Hackum (1989) looked at a new transmission planning model, Oke and 

Bamigbola (2013) worked on the minimization of losses on electric power transmission lines 

and Abddullah et al. (2010) looked at transmission loss minimization and power installation 

cost using evolutionary computation for the improvement of voltage stability while Oke 

(2012) considered the mathematical model for the determination of voltage and current on 

lossy power transmission lines. There had been little or no work on the application of Laplace 

transform method to the solution of general wave equations on transmission lines, hence the 

need for this research work.  

 

MATERIALS AND METHODS 

We shall consider an infinitesimal piece of telegraph wire as an electrical circuit, which 
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consists of resistance , capacitance , inductance  and conductance . If  

is the current through the wire and   is the voltage at position x and time t while the 

voltage across the resistor is , and that across the coil is  then the equivalence 

circuit of transmission line is as shown in figure 1 below.  
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Figure 1: Equivalent Circuit of a Transmission Line

 

Applying the Kirchhoff’s voltage law and Kirchhoff’s current law in the symmetrical 

network of figure 1 and simplifying as appropriate, we have 

  

and 

  

Equations (1) and (2) above describe the evolution of current and voltage on a lossy 

transmission line, Hayt and Buck (2006) and Oke (2012). 

Differentiating (1) with respect to x and (2) with respect to t and simplifying the result, we 

have  

  

Differentiating (1) with respect to t and (2) with respect to x and simplifying the result, we 

have   

  

 Equations (3) and (4) are hyperbolic partial differential equations which represent the 

general wave equations for a lossy transmission line, Hayt and Buck (2006) and Oke (2012). 

Dividing equation (4) by LC, we have 
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Let , , , so that equation (5) now becomes  

  

For a lossless propagation, all the power at the input end eventually reaches the output end. 

This implies that power is not deviated as the wave travels down the transmission line. 

Therefore, all mechanisms that would cause losses to occur have negligible effect and are 

thereby set to zero. In our model, lossless propagation would occur when the resistance (R) 

and the conductance (G) are set to zero and we have 

     

This implies that  and we therefore have 

   

where   

Equations (6) and (8) will now be solved with respect to the initial conditions  

,  

where  is the current through the conductor,  is the initial current and  is the initial 

speed of the current. 

The Laplace transform of the partial derivatives  and  which follows analogously 

from the Laplace transform of the derivatives of function of one variable are given 

respectively as 

  

and 

  

As we are transforming with respect to t, we further suppose that it is legitimate to 

interchange differentiation and integration in the process of finding the Laplace transform of 

, Zill and Cullen (2005). We therefore have  
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, Dass and Verma (2011) and Riley et al. (2002). The Laplace 

transform of all these partial derivatives will be used extensively in this paper. 

 

RESULTS AND DISCUSSIONS 

There are several methods of solving second order partial differential equation; these include 

the method of separation of variables, change of variable, Fourier transform method, Laplace 

transform method, to name a few. The Laplace transform method is applied in this paper 

because the model is an initial-value problem and the initial conditions are nonhomogeneous. 

Therefore, taking the Laplace transform of equation (6) with respect t and substituting the 

initial conditions, we have 

  

    

That is 

   

which can be re-written as 

    

where 

  

and   

The general solution of equation (14) is 

   

where  is the complementary function and  is the particular solution. Solving 

the associated homogeneous differential equation for (14), we have the complementary 

function as 

  

 Using the method of variation of parameters, Zill and Cullen (2005) and  Kreyszig (1987). 

We seek a particular solution of the form 
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where  , , 

  and  . 

   

  

  

We can easily see from (18), (19) and (20) that ,  and 

. 

Therefore  and  . 

Substituting the values of , ,  and in (17), we have the particular 

solution as 

  

  

The general solution to (14) is therefore 

  

 Substituting the values of  and  in (22), we have 

  

  

  

Simplifying the equation by taking , we have 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.5, No.3, pp.28-35, June 2017 

__Published by European Centre for Research Training and Development UK (www.eajournals.org) 

33 

ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

  

  

  

Suppose that  and  are polynomials of degree n, then equation (24) becomes 

  

  

   

  

  

The final solution of equation (6) together with the initial conditions will now be 
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where  is the Dirac delta function. 

For a lossless propagation, where power is not dissipated as the wave travels down the 

transmission line, we take   and apply the convolution theorem of Laplace 

transformation to get the final result as  

  

  

   

  

  

where  is the Dirac delta function and  represents the Heaviside step function. 

 

CONCLUSION 

The Laplace transform method has been applied in this paper to solve the general wave 

equations on lossy and lossless transmission lines. The mathematical model for a lossy 

transmission line contains all the primary constants of the line. But for a lossless propagation, 

values of resistance and conductance were set to zero because they are part of the mechanism 

that would cause losses to occur in the system. The method of variation of parameters and the 

convolution theorem of Laplace transformation was then used to get the final solution to the 

problem. 
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