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ABSTRACT: Utilizing Adaptive Finite Automaton (AFA) to implement AdaptiveDigitized  Straight 

Line Segments (ADSLS) actuating as explorationautomaton of a boundary, we propose an 

alternative forthe available researches on dominant point detection in whichprimitives are 

composed by ADSLS. Consequently, this methodis shown by simulations to be effective to represent 

adaptiveregions of support and adequate for the complexities of realworld scenarios like a shape 

classifier. Furthermore, even beingbased in the simple underlying mechanism of Finite 

Automaton(FA), ADSLS is able to adapt, reacting to circumstancestimuli in a single pass, also 

presenting learning capability. 

 

KEYWORDS: Adaptive Systems, Automata, Computational Geometry, Pattern Recognition, 

Error Correction. 

 

INTRODUCTION 

 

The points where the shape curvature function changes significantly presenting “high curvature 

values” are called dominant points whose detection is an important step in many shape 

classification, image processing, computer vision applications or robot navigation because they 

convey valuable information on the outline of the shape (Prasad &Quek, 2013) (Shwetha&Ramya, 

2014).Historically, the problem of detecting points of high curvature in 2D shapes has been 

researched since the early 1970’s (Ruberto&Morgera, 2009). In particular, the syntactic method 

was used to describe the structure of a two-dimensional shape by grammatical rules and the local 

details by primitives, composing a boundary chain of m vectors (You&Fu, 1979). Four attributes 

were proposed to describe an open curve segment, and the angle between two consecutive curve 

segments was used to describe the connection. Thus, a curve or arc segment C may be 

characterized by its curvature function f(l), such as given a pointl belonging to C, and considering 

σ as the angle between tangent lines to the arc segment on the points 𝑙 −
∆𝑙

2
 and 𝑙 +

∆𝑙

2
, the curvature 
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function f(l )isgiven by Expression 1, corresponding to the derivative of σ along the segment, 

relative to the arc length ∆𝑙: 

𝑓(𝑙) = lim
∆𝑙→0

 σ

∆𝑙
                                 (1)         

 

A digital arc S is understood as a set of interconnected pixels belonging to a digital image, 

positioned on a grid such that each pointof the set has exactly two neighbors, except two of these 

points, known as extremes, which have only one neighbor in S (Klette&Rosenfeld, 2004). The 

terminology “high curvature values” is feasible in a relative sense to the points belonging to an 

established neighborhood of the dominant point due to that there exist no mathematical definition 

of curvature for the digital curve. In fact, this neighborhood is called the Support Regionof a point 

of interest, usually predefined (Wu, 2003). Noticing that there are other names in the literature for 

the dominant points in question, for example, peaks and valleys or corners meaning points on the 

curve associated with identifiable discontinuities in the mean curvature of the curves. As a matter 

of fact, usually corner detection takes into account the magnitude of the discontinuity related to 

the degree of curvature near the corner and the regions of the curve on both sides of the corner. 

 

A drawback encountered in this research is the definition and processing of primitives owing to 

the extraction of primitives to define shape local properties and the construction of production 

rules todescribe the global structure. By (You & Fu, 1979), if primitives were very simple curve 

segments with fixed lengths, then it would be necessary to use context-sensitive grammars to take 

care of the scaling, impeding the use simple devices like the Finite Automaton (FA). This problem 

attracts significant attention even today in the research community as (Prasad, D. K. 2013) 

described state of art methods showing that in most the duality of precision/reliability and 

local/global of a fit haunts most fitting algorithms and the majority of modern approaches use local 

fit to detect dominant points neglecting the global aspect. 

 

By the algorithm proposed by (Gao&Leung, 2002), given a boundary represented by k primitives 

Pi-k+1Pi-k+2…Pi, mergers occur between primitives (ie two or more primitives are associated or 

grouped in a given primitive representing a class) considering lk and θk, the length and orientation 

angle of the primitive reference respectively. In the opinion of (Gao & Leung, 2002) the angle 

contribution from a specific primitive to the merger process depends on the length of the contour 

related to this length primitive, meaning that its contribution to the class is proportional to the 

amount of primitives of the same type. 

 

A well used technique to represent a shape efficiently is by using chain code primitives in which, 

originally, the prominence of a corner (the “cornerity” of a point) may be the length product of 

uniform substring and the angle discontinuity at that particular point (Abbasi, Olyaee, 

&Ghafari,2013). Such substrings are called arms of the chain code on both sides, that is to say 

from the left and right of the point traversing the boundary in clockwise and anticlockwise 

direction. 

 

However, there are disadvantages in chain code schemas as high sensitivity to noise (Feschet, 

2008) causing that the oscillation in curvature which cause peaks and valleys in the arches being 
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corrupted requiring primitives with "corner tolerances".This is confirmed by the comments of 

(Ruberto&Morgera, 2009) that algorithms are not robust in noisy contours, due to fact that the 

localmaximum curvature may be caused by noisy variations on the curve. In this way, 

(Ruberto&Morgera, 2009) utilized a final process of refinement to reduce the uncertainties in the 

applicationof attributes like angle and local arm lengths in determining corners. 

 

Relatively to the syntactic approach utilizing automaton, very little is found in the literature, an 

exception is (Dinesh& Guru, 2007) that described a method of dominant point detection useful for 

its curvature estimation in which a FA is devised to determine an adaptive region of support of a 

point. However, among the computational costs involved there was the construction of the FSA a 

priory with 120 states, and thus boundary parametric information was not taken in account.Chain 

code was introduced by Freeman in 1970 (Freeman, 1970) as a one-pixel-thick boundary 

descriptor in a grid, and digital straightness was conjectured as well. In this model, given a pixel, 

the main and immediate neighborhoods of this pixel are shown by symbols in Fig. 1. 

 

Understanding the problem from the syntactic point of view, this study involves the concepts of 

language, grammar and types of grammars (Ramos, Neto, &Ítalo Santiago Vega, 2009). According 

to Noam Chomsky hierarchy dating back to 1956, languages are classified into four different 

classes: Recursive Languages (or type 0), Context SensitiveLanguages (or Type 1), Context-Free 

Languages (or type 2) and Regular Languages (or Type 3). There are degrees of complexity related 

to the classes mentioned since class 3 type is a subset of class Type 2, Type 2 class is a subset of 

a class type 1, class and type 1 is a subset of Class 0. 

 

 

 
Figure 1: On the left is a graphical representation of the chain code symbols 0-3 of neighborhood-

4. On the right, the chain code symbols 0-7 of neighborhood-8.One reason for the lack of proposals 

utilizing automata is caused by the computational power required for dominant point detection that 

inhibits the use of simple devices as FA.This study proposes an alternative for the existing methods 

through the Adaptive Digitized Straight Line Segment device (ADSLS) (Barros Neto& Hirakawa, 

Oct. 2014) implemented by Adaptive Finite Automaton (AFA), in which the chain code is applied 

to represent contour shapes using the facility of adaptive scales such that the number of automaton 

states, or required memory, vary adaptively according with the curves. 

 

Fig. 2 shows an example of the string of DSLS, in the first quadrant and thus codified by symbols 

a and b, always composed of a symbol that is repeated in runs and of an isolated one as in this case 

of b e  a respectively. 
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Figure 2: A generic DSLS in the first quadrant, composed of runs of P and Q symbols b, as spaced 

as possible between codes of a, with P and Q constant integers. 

For situations of arcs with local and unreal peaks or valleys, the detection process has to leave out 

of account these local irregularities, and consider the overall arc to get a panoramic view of the 

entire outline of the shape including the possibility to compare arc lengths. 

However, DSLS of variable lengths and angles to represent the regions of support, which are not 

necessarily symmetric, are requiredwith powerful recursive languages that inhibit the application 

of simple formalism for syntactic analysis, such as FSA (Barros Neto&Hirakawa, Oct. 2014) - 

remarks that a regular languageis specified by a regular grammar. The concepts of regular language 

and FSA are equivalent in the sense that for every regular language there is at least one FSA that 

recognizes it and vice versa(You & Fu, 1979). 

 

Barros Neto&Hirakawa,(2014) presented capabilities of adaptive techniques related to the 

formalism of ADSLS in computational geometry, we advance further proposing this formalism 

applied to corner detection utilizing the same AFA, a Turing-powerful device (Neto, 2007). This 

continuity of this paper is organized as follows. In Section 2 the problem is detailed. In Section 3, 

the underlying principles necessary for understanding this research are presented. The method 

involved in this study is described in Section 4, regarding automaton implementation and adaptive 

grids. Simulations are performed inSection 5 corresponding to proofs of concept aiming at the 

analysis of this proposal. In Section 6, results are discussed and the position of this research within 

the state of the art is indicated in Section 7. In Section 8, final considerations are drawn with 

intended future studies. 

PROBLEMSTATEMENT 

Dinesh & Guru, (2007), utilized here didactically as the reference paper since it uses an exploration 

automaton, a pre built FA with 120 states actuating in a kind of backtracking schema to cross the 

border inclockwise or counterclockwise, which leads it to any final state or reject the input strings 

representing the outline injected into the FA as input. The number of transitions that the FA takes 

on the input chain code sequence defines the size of the corresponding arm, fixed to the maximum 

of 120 states, because this input defines the set of points which come before the point of interest 

Pi as the left arm and the set of points which come aftert he point of interest is regarded as right 

arm. 

 

In the opinion of (Feschet, 2008) the Freeman model tends to generate too much short segments 

even with partial adaptive solutions like the one described by (Bhowmick&Bhattacharya, 

2007).Understanding the region of support of a point Pi as the point itself plus the left and right 

arms of lengths A and B respectively, the angle αi    made at that point due to its left and right arms 
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may be calculated based in some existing algorithm, for instance the one proposed by the reference 

paper:  

 αi   = arccos [
A2  + B2    − C2  

2AB
]                  (2) 

, where C is the lengths of a third side, opposed to Pi, connecting the extremes of the left and right 

arms of a triangle with sides of length A, B and C. A basic case is a square like indicated in Fig. 3 

where Pi is the reference point and the lengths𝐴 = 𝑃𝑖−1     𝑃𝑖     
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the left arm, 𝐵 = 𝑃𝑖     𝑃𝑖+1    

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the 

right arm, and 𝐶 = 𝑃𝑖−1    𝑃𝑖+1    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 
Figure 3: Shape in form of square showing dominant points Pi, Pi-1 and Pi+1. 

It followed that the curvature ρi at the point Pi may be given by 𝜌𝑖=
1

𝛼𝑖
 , selecting as dominant points 

those that bear local maximacurvature, whose calculus depends on the detection results from the 

FA.Even without any noise effect, for the Freeman model, the uncertainties described in section 1 

are critical also due to change of directions, meaning changing the isolated symbol as result of 

angle ambiguities in digital arcs conducting to errors in Expression 2. Such uncertainties occur by 

the very nature of the digitization process, associated with effects depending of the fineness of the 

sampling grid, and theoretical model implementations exemplified by approximations of the 

derivatives of the curvature with respect to the length of Expression 1 in digital geometry. 

 

Lebedev, (2004) performs a coordinate precision analysis concluding that there is an intrinsic error 

in the Freeman model which causes an inaccuracy in the measurements in this model depending 

of the thickness of a β zone. (Lebedev, 2004) estimated measurement errors of the coordinates for 

the corners of a rectangle arbitrarily oriented in a grid, as well as other objects characterized by 

corresponding segments mutually perpendicular. The noise influence was not presented in more 

detail, only commented that it is a function of orientation angle, the length of the sides and the 

relationship between the sides of a rectangle. Veelaert, (2005) concluded about the process of 

extracting geometric primitives from an image that has to deal with different types of uncertainty 

in different stages of the process confirming the need t oconsider the intrinsic inaccuracies 

mentioned in this item. 

 

For these reasons Largeteau-Skapin& Andres, (2006) described transformation operations 

between the Euclidean and discrete formalisms proposing a discrete smooth scaling operation in 

order to represent objects in a finer discrete grid Woo & Park, (2011) .also takes into account 

studies about the length of primitive as afactor in their grouping into classes in the digital case 

demonstrating that that the determination of the various attributes of arcs involve approximations 

of theoretical models and compromises between accuracy and allowable tolerances. For example, 
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consider images containing a number of short segments generated by the output of some edge 

detection algorithm. These segments are considered as individual structures defined by their 

geometric properties like the corresponding orientation angle or segment length. This idea has the 

effect of treating such short segments as primitives, which are then called as tokens, considering 

that normally these tokens lie along straight lines; the lines become the most important structure 

sin an image.In consequence, the region of support detected by pre built FA tends to increase in 

consuming memory, preventing shape scaling and defective error correction caused by 

approximations of the regions ofsupport due to the digitization process, as well as the restrictions 

implicit to the sensitiveness of the Freeman model. The adaptive scales proposed by the present 

work study aims to use the concept of discrete geometrical simplification based operation, 

changing the quantization errors adaptively depending on the lengths and curvatures of the arches. 

With this procedure, the unnecessary details detected for a given grid spacing will not be detected 

in the other, and vice verse. 

FUNDAMENTS 

An adaptive device changes its behavior dynamically in response to input stimuli without 

interferences from other external agents, including users (Neto, 2007). Normally, they are made 

of two layers comprising a non-adaptive underlying mechanism ND0, associatedto an adaptive 

layer AM, using the same formalism of the first. This growth in complexity profits not only from 

the notable increment in expressive power of the combination, but also in versatility, as one can 

choose any consolidated mechanism as the non-adaptive device. An Adaptive Finite Automaton 

(AFA) is represented by Expression 3 with FSA as ND0. 

                 AFA = (ND0, AM)                                        (3) 

The next topic presents a brief review of AFA. 

A.  AdaptiveFiniteAutomaton (AFA) 

From Expression 3, the adaptive layer AM comprises adaptive actions that works on the original 

set of rules (ND0;AM). ND0 characterizes AFA initial configuration. 

Adaptive actions are calls to parametric adaptive functions (ADF) responsible for self modification 

procedures. Depending on the stimulus i from input string, linked to an operational step i, AFA 

configuration NDi-1 is modified by adaptive actions, resulting tha tthe FA NDi-1is changed to 

another FA NDi belonging to the set {ND0,ND1, ND2,…,NDi….: i≥0}. Furthermore, the AFA 

formalism regards elementary adaptive actions to be applied to the transition set of the automaton, 

so that set sof elementary adaptive actions are abstracted in ADF which interconnects the adaptive 

layer to NDi, as presented in Fig. 4 through generic ADF R and S. 

 

 
Figure 4: A generic AFA transition where R and S are optional adaptive functions (ADF) 

responsible for self modification procedures. 

Fig. 4 shows the static graphic representation of a generic AFA transition (x, i) : R→y : S, where 

x is the current state before the transition; y is the state after the transition; i is the input stimulus 

before the transition; R is an ADF executed before applying the transition; and, finally, S is an 
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ADF executed after applying the transition. Graphically, any ADF R is portrayed by R. (R followed 

by point) in case it is of the before type; likewise, any ADF S is an after type if it happens to be 

denoted by .S (point followed by S).When it comes to formats, there are three modalities of 

elementary adaptive actions shown in Table 1, specified by a prefix symbol. Given a certain pattern 

transition enclosed in brackets shown in column SYMBOLOLGY of Table 1 associated to the 

prefix symbol, where [(x, i) : R→y :S] is the pattern to be specifiedand R and S are optional ADF, 

the inspection kind searches the current state set for this pattern. The deletion one erases the pattern 

from the current state set; and the insertion kind adds the pattern to the current set of transitions.  

 

TABLE I: ELEMENTARY ADAPTIVE ACTION FORMAT. 

MODALITIES PREFIX 

SYMBOL 

SIMBOLOGY 

INSPECTION ? ?[(x, i) : R→y :S] 

REMOTION - -[(x, i) : R→y :S] 

INSERTION + +[(x,i) : R→y: S] 

 

A provision is made so that the inspection type is executed first, next the deletion, and finally the 

insertion kind; adding that null transitions have the lowest priority.About ADF format, in the 

general case, it has a heading composed of parameters, generators and variables and a body 

constituted of elementary adaptive actions. All of them are optional; however, if parameters are 

specified, they have to be supplied to activate the corresponding ADF.Variables are used in place 

of any of the components of the elementary adaptive action, further assigned the actual 

corresponding values in the matching process with the pattern given. Then, after the matching 

process, variables may be undefined (in case no match isfound) or defined (otherwise). Generators 

are used to assign names to newly created states. Roughly speaking, generators are also like special 

variables, which are automatically assigned unique values as soon as an ADF is activated. In the 

activation of an ADF, the assignment of argument values to the parameters occurs, too. Neither 

generators nor parameters are allowed to change any longer, once assigned. 

 

To differ from variables, generators receive the symbol * as exponent. Fig. 5 shows an example of 

AFA that recognizes strings of the kind anbncn, with 𝑛 ≥ 1 because each time token a is consumed, 

ADF A inserts a new transition that consumes tokens b and c in the automaton. 

DSLS revisited 

From the introduction in Section 1, in neighborhood-4 or neighborhood-8, the chain code is a 

sequenceof elements in which each element is a symbol from Fig. 1 that represents the vector 

joining two neighboring pixels of a digital arch, aiming to represent the digital arch in question.In 

his model, Freeman stated that strings representing straight lines must obey three properties in 

neighborhood-8: (Prop1) At most two types of symbols, representing directions in the chain code, 

can be present, and these can differ by unity module eight. (Prop2) For one of these directions, the 

run length must be 1. One of the two symbols always occurs singly. (Prop3) Successive 

occurrences ofthe single symbol are as uniformly spaced as possible among codes of the other 

value, which occurs in groups. The meaning of Prop1 to Prop3 is to represent the straight line by 



European Journal of Computer Science and Information Technology 

Vol.3, No.1, pp.87-107, March 2015 

             Published by European Centre for Research Training and Development UK (www.eajournals.org)  

94 

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online) 

 

a sequence of vectors with multiple slope of 450 and the lengths of which are either 1 (when 

horizontal or vertical), or √2 (whendiagonal). 

 

As the third property Prop3 was considered somewhat unclear, researches proved that the 

straightness of a digital arc can be determined by the absence of unevenness in its chain code, 

necessaryand sufficient for meeting the chord property, extracted from the brief historical 

presented by (Barros Neto, Hirakawa, &Massola, 2011): 

A digital arc A is said to have the chord property if for every two digital points c and d in A, and 

for each point p = (x, y) on 𝑐𝑑̅̅ ̅, there is a point e = (h, k) of A such that 

max⁡max{|𝑥 − ℎ|, |𝑦 − ℎ|} < where 𝑐𝑑̅̅ ̅  is the line segment between c and d. 

 
Figure 5: Example of AFA that recognizes string anbncn:𝑛 ≥ 1. 

The chord property implied establishing a hierarchical structure composed of consecutive numbers 

corresponding to the runs and runs of runs of the symbols specified by Prop1 and Prop2. This 

structure of consecutive numbers is expressed by an additional property Prop4.  

In sequence, it was demonstrated that there can be only two possible lengths of these different 

runs, which are two consecutive integers (for example, P and P+1). On the other hand, studies 

showed examples of DSLS that violate the regularity implicit in the chord property, commenting 

that, in practice, Prop3 and Prop4 are enviable in digital arcs (Klette& Rosenfeld, 2004). However, 

it is more reasonable to expect a slight variation in the runs, within a tolerance level, but always 

keeping the overall slope, thus defining an approximate DSLS.  

 

Therefore, a criterion used concentrated on strings that satisfied the first two properties of the 

Freeman conjecture, called monotonic codes, as they represent digital arcs that are either ascending 

or descending, with reference tocoordinate axis x and y. 

 

In order to keep the slope of a digital line, the smallest segment ofa DSLS is called the Unit of the 

Straight Line Segment (USLS), resulting in mathematical models. (Barros Neto&Hirakawa, Oct. 

2014) stated an enhanced method  taking  into account that the adaptive representation can express 

changes in the scales of segments. Therefore, an irregular trajectory may be detected as DSLS after 

it is reviewed in acompatible scale, using metrics. 

In summary, adaptivity can be an alternative to incorporating thefundamentals of arithmetic 

discrete geometry to Freeman’s in corner detection. 

Codification 

If nothing else is specified, without loss of generality, in this paper neighborhood-4 (see Fig. 1) is 

the default, so that the symbols of property Prop1 must be consecutive, module four. More 

precisely, the symbols that make up strings belong to Σ = {a, b, c, d}. To satisfy Prop1, just 
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consider module 4 along with a=0, b=1, c=2, d=3, for neighborhood-4 of Fig. 1 and Fig. 2. Any 

string 𝑆 = 𝑠1 … 𝑠𝑛 may be represented by its symbol, followed by the indication of its i-th element 

si giving Expression4: 

𝑆: 𝑠𝑖; 𝑖 = 1,2, … . , 𝑛.                                           (4) 

In Expression 4, n denotes the length of string S which means 

|𝑆| = 𝑛. Symbols 𝑠𝑖 ∈ Σ  may be called token, chain code elements or stimuli, too. The null string 

n=0 is represented by ε. If all symbols of S are identical, 𝑆 = 𝑠1 = 𝑠2  = ⋯ = 𝑠𝑛−1 = 𝑠𝑛 = 𝑠 a 

compact representation is 𝑆 = 𝑠𝑛. Note that null transition causes automaton non determinism. A 

deterministic automaton may be redesigned using markers such as 𝛥 ∉ Σ in place of ε. 

Adaptive DSLS (ADSLS) 

ADSLS uses a modified chord property for models of higher orders (order n) incorporating 

tolerances in angle and in lengthof DSLS. The modified chord property changes neighborhoodof 

chord property into a variable neighborhood function such as max{|𝑥 − ℎ|, |𝑦 − ℎ|} < 𝑛, where n 

is the order of the model that depends on the momentary situation and the length of the segment, 

to sum up, of the stimuli. That is to say, the neighborhood function of DSLS must have a relatively 

large width, proportional tothe measured length towards the overall linear structure.Regarding 

techniques for error recovery in this study, it is often convenient to represent the real numbers in 

a given circumference and not in a straight line, as usual. Especially, from the circumference of 

unit length, when defining an arbitrary origin point, we represent any point T by its measured 

distance around the circle in a counterclockwise direction (this by definition). The division of the 

circle can be from the Farey series in the form of spyrographs described on page 326 of (Klette& 

Rosenfeld, 2004). 

 

The techniques of error recovery of syntactic analysis of DSLS employan approach similar to 

spyrographs in the form of adaptive loops, such that, by these loops, the circumference is built by 

states of the AFA, which moves cyclically and continuously through theclosed loop. In effect, 

adaptive loops have their total number of states according to tolerance levels.In order to simplify 

the description of automata, take in to account that the abbreviation HTST means a sequence head-

to-toe of transitions that consume the same symbol; besides, each state belonging to the sequence 

may be specified by the first state followed by itsrespective sequential index. The extremes of a 

hypothetic DSLS may be truncated or completely out of the global structural model. In the former 

case, the sequence should be accepted; in the latter, rejected.Fig. 6 exposes an AFA which tests 

the first USLS of a DSLS (a4b)n. Parameter r4 is the last state of the HTST starting in r. From this 

arrangement, the AFA removes up to four ∆ transitions by ADF RA. Elucidating, each time RA is 

activated by token a, it removes from the automaton one of the ∆ transitions that constitutes the 

HTST. Furthermore, any token b received conducts the AFA to the final state; conditioned to if 

more than four tokens a are received, the sequence is rejected. The analysis of the other extreme 

is quite similar. 
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Figure 6: AFA initial configuration to detect a DSLS considering slope errors, including testing 

the first USLS of a DSLS from (a4b)n model. 

Recognition of DSLS subjected to slope errors is exemplified by {𝑎𝑛𝑏: 𝑛 = 3, 4, 5}. Fig. 6 shows 

the initial configuration of the automaton prepared to accept truncated USLS1 similar to the last 

item. With the first token b consumed, ADF B is activated, which removes transitions of the initial 

configuration, changing the automaton topology to that of Fig. 7. 

 
Figure 7: Configuration of AFA of Fig. 6 after the activation of ADF B. 

Afterwards, the AFA starts to consume the succeeding USLSi :i>1until the input stream is 

exhausted. A token c is included just to signalize the end of the DSLS, when the automaton reaches 

the final state if the process is successful. On the other hand, if more than 5 tokens a are received, 

RA removes transition of c to the final state, rejecting the sequence. 

Strings of Fig. 8 show the performance of the AFA. These strings follow the model 𝑈𝑆𝐿𝑆𝑖 =
{𝑎𝑛𝑏: 𝑛 = 3, 4, 5}, truncating USLS1 in some strings, too. Strings out of this model are rejected. 

Note that the AFA performance does not depend on the length of the input DSLS. 

 
Figure 8: Examples of DSLS accepted by AFA. 

 

D1-DSLS Length Similarity. The method to represent and to apply tolerances is by a graph, or a 

loop such that the number of states of the loop (that is, its size) is changed adaptively in function, 

for example, of angle θs related to axis x; besides, θs gives the main direction of DSLS S, obtaining 

a syntactic measurement parameter r(1 − 𝜓) relative to S detailed in (Barros Neto&Hirakawa, 

Oct. 2014). Fig. 9 shows a loop containing to states, ranging from L1 to Lto. 
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Figure 9: A generic cyclic loop. 

Considering that this graph is only for consultation by the automaton, the specific symbol of the 

transitions between its states becomes irrelevant. The reasoning with this procedure is that, for 

each symbol belonging to the DSLS S such that |𝑆| = 𝑛, the automaton has to access the loop, 

advancing counterclockwise through the cycle, circulating through the graph as many times as the 

value of n. Factor 0 < ψ < 1 is an error rate meaning a small percentage of n, inasmuch as a simple 

case in which the length is estimated by the number of symbols in the neighborhood-4, given by 

Expression 5; such that given a string S with length |𝑆| = 𝑛, the corresponding SLRD of length 

𝑙𝐹 = 𝑛, this loop allows that the AFA corrects 𝑙𝐹 to 𝑙𝐸 , where 𝑙𝐸  is the corrected estimated length 

by the Expression 5. 

𝑙𝐸 ≈ 𝜓𝑙𝐹                                                                (5) 

 

Since n is a variable depending on lengths, the loop is adapted by changing the amount of states to 

of Fig. 9, and the main angle of the DSLS  θs. 

 𝑡0 ≈ ⌊1
(1 − 𝜓)⁄ ⌋                                         (6) 

 

For a given value of n, the AFA pumps a primitive (for instance, any symbol not belonging to Σ) 

for each circle on the loop thereby obtaining a syntactic measurement parameter (1 − 𝜓) relative 

to S. It follows that, in the end, ⌊𝑛
𝑡0⁄ ⌋      symbols would have been pumped with the last symbol 

of S. Therefore, ⌊𝑛
𝑡0⁄ ⌋ symbols can be excluded from the total n to obtain the corrected estimated 

length lE. It is also possible to implement inequalities in ADSLS by which to judge lengths of two 

segments |𝑆1| = 𝑛 and |𝑆2| = 𝑚, in a range of values of Expression 7: 

𝑛 − ⌊𝑛
𝑡𝑜⁄ ⌋ ≤  |𝑆2| = 𝑚 ≤ 𝑛 + ⌊𝑛

𝑡𝑜⁄ ⌋            (7) 

 

PROPOSED METHOD 

 

This study aims to investigate the use of ADSLS as exploration automaton responsible by adaptive 

techniques. Again, the reference paper bases its implementation and algorithmic in a pré built FA 

with 120 states actuating as exploration automaton of contours represented by strings that are 

injected in the automaton as input, to transverse the boundary inclockwise and anticlockwise, 

which leads it to either the final state or to reject the sequence. Supposing a string 𝑆: 𝑠𝑖; 𝑖 =
1,2, … . , 𝑛, with symbols 𝑠𝑖 ∈ Σ  that defines a boundary and to determine the left arm of a 

point 𝑠𝑗 ∈ S , the symbols from the point 𝑠𝑗  are extended inclockwise direction whereas to 

determine the right arm, the points are extended in counter clockwise direction in a kind of 
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backtracking. 

 

Notwithstanding, the method proposed here apply the ADSLS inplace of the FA with angle and 

length tolerances adjusted according with the local and global parameters without backtracking to 

detect the arms since properties of DSLS are used to guide the automaton. Flexibility of extension 

of this method may be seen by previous works like (Sousa &Hirakawa, 2005) that showed the 

feasibility of implementing robot navigation systems composed of a navigation automaton 

operating to work in conjunction with a manager system and a navigation automaton,but restricted 

to horizontal and vertical trajectories of robots.  

 

The contribution in corner detection here is summarized by the following: i) Bringing ADSLS into 

play to use adaptivity to represent the errors, the tolerances and parameters involved. ii) 

Concurrently, using adaptive grid resolution resulting in adaptable scales. iii) The number of states, 

or required memory, varies according with the curve because the region of support of each point 

is determined by their local and global properties.Strings resulting from adaptive scale factors that 

change the length of primitives are recognized by the same set of automata: spatial variability of 

grid by adaptivity does not require changing the automata.As a result, analysis of situations of 

region of support depends on the scale involved. If a path segment 𝐴𝐵̅̅ ̅̅ ̅ is relatively too short 

compared with the overall trajectory, it is advantageous to use primitive dimensions large enough 

to be relatively compatible with the size of msegment 𝐴𝐵̅̅ ̅̅ ̅. If 𝐴𝐵̅̅ ̅̅  is relatively large, primitive 

dimensions have to be short enough to detect shorter segments. Therefore, the adaptive scale 

proposed by this research reuses, in a new context, a technique 

of (You & Fu, 1979) known since the 1970s actualized b improvements in computational power 

obtained by adaptivity. 

 The adaptive neighborhood. 

The purpose of this research, in which arcs and straight line segments can be in various scales 

delimited by adaptive boundary conditions, is such that these conditions define the envelope of a 

digital region on the variable sampling grid depending of the adaptive scale and of the stimuli 

(input string and parameters like the length of input SLRD).The representation of the different 

instances of the ideal Freeman‘smodel affected by the angle errors requires the SLRDA act in 

arange of angles to be changed depending on the stimuli, following a modified chord property. 

Among these stimuli to affect the adaptive neighborhood, emphasizes is given to the length of the 

input SLRD.A digital arc C is said to present the modified chord property if, for every two digital 

points c and d belonging to C, and for each point p = (x, y) on 𝑐𝑑̅̅ ̅,  there is a point e = (h, k) 

belonging to C such that max{|𝑥 − ℎ|, |𝑦 − ℎ|} < 𝑛 , with 𝑛 ≥ 1. 𝑐𝑑 ̅̅ ̅̅ is the line segment between 

c and d, and n considers the length of the digitized segmentadaptively 

 

In this definition of modified chord property stand out: i) The neighborhood max{|𝑥 − ℎ|, |𝑦 −
ℎ|} < 𝑛; ii) n is the model order dependent on the momentary situation, the stimulus and the 

segment length; iii) The neighborhood function of a DSLS must have a relatively large width 

(proportional to the measured length) in the directionof the overall linear structure. 

Fig. 10 outline an example of proposed models by this definition where P depends on the segment 

length and its type is variable: 𝑃(𝑎, 𝑏𝑚): 0 ≤ 𝑚 < ∞. 
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Figure10: Superior order models (order n), with P variable. 

Relating the concept of curvature function for the digital case, the topics that follows show 

experiments of discrimination of basic shapes through SLRDA with intent to change adaptively 

the corresponding neighborhood related to P variable. 

EXPERIMENTS 

Dominant point detection is intrinsically related to shape. Due this fact we use basic shapes for the 

experiments because the exploration automaton has to compare the shape sides (the arms) 

represented by the input string. Examples of AFA for dominant point detection are described fort 

wo cases: free of errors and considering errors. Errors may occur in angle and length. For 

simplicity, ADF codifications are not shown.  

B.  Region of Support Similarity:slope errors. 

The AFA of Fig.11 recognizes an input stream W = S1S2S3S4, concatenation of four DSLS: S1, S2, 

S3, S4. Each DSLS is an arm. 

 

 
Figure 11: Initial Configuration of AA that RecognizesW = S1S2S3S4 without Length Errors. 

To demonstrate the effect of slope errors in classification, the automaton of Fig. 11was fed with 

strings W represented in Fig.12 varying the slope of individual DSLS. Albeit constituting by DSLS 

with variable slopes, the string [(ba4)4b(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)3(ad4)a] of Fig. 12-a was 

accepted by the AFA, even so combined slope variations from sides distorts the square. Even 

though the AA is capable of capture the global geometric property, accepting the sequence that 

could be rejected by amethod more local. String 

[(ba3)(ba4)(ba3)(ba4)b(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a] of Fig.12-b was accepted too, but, 

comparing with the previous string, this one introduces slope variations in the first shape side, so 

that total combination of slope variation from all sides diminishes shape distortions visually. 
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Figure 12: Shapes composed of DSLS with variable slopes 

String [(ba3)4b(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a] of Fig.12-c, was accepted resulting in a shape 

with less distortions than those that occurred before. The first, third and fourth shape sides do not 

have much slope variations. Slope variations from the third side are difficult to visualize, yet not 

an ideal DSLS; conversely the square is visually identified with easy. 

In Fig.12-d, the string was rejected because its USLS (ba5) is out of the defined range. USLS (ba5) 

is easily identified visually in the overall formation: ] 

[(ba3)(ba5)(ba3)2b(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a] About string of Fig. 12-d, elementary 

changes in some ADF, like RA, would permit accepting the sequence,adjusting the classifier if 

required by specifications, otherwisesegmentation algorithms should be more precise 

(Shwetha&Ramya, 2014). 

Region of Support Similarity:scaling. 

AFA of Fig.13, constructed by modifications of previous ADF, recognizes the triangle fed by 

W = S1S2S3. 

 

 
Figure 13: Example of AFA for Triangle Classification. 

      Strings of Fig. 14 represent the same shape in two different scales recognized by the AFA of 

Fig. 13. 
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Figura 14: Shape scaling. 

Region of Support Similarity: length errors. 

Approximate length is informed to the AFA by Ψ in W =ΨS1S2S3, where: i) Ψ is such that Ψ=yto 

is a string composed by an auxiliary token y, in order to inform the error length tolerance to be 

employed related to the angle θS of some string S ; ii) S2 and S3 are observed region of support 

strings to be compared by Expression 7 with S1within the tolerance (1-ψ). The number of states on 

the loop is constructed by the AFA of Fig. 15 obtained by Expression 6 from the string Ψ, 

according with the number of symbols y. 

 

 
Figure 15: Initial Configuration of AFA for Classifications of Triangle Affected by Length Errors. 

A brief explanation of this automaton is as follows. Refer to the AFA of Fig.15 showing the loop 

of Fig. 9 to the right and 3 pointers, pa, pc, pd. Clarifying, pointers are elementary null transitions, 

for instance, pointer pd is pointing to w by the transition [(pd, ε) → w], called simply by its fixed 

state pd. 

 

In case tolerance is informed to the AFA by tokens y from Expression 6, adaptive function RO 

must consume tokens y, constructing the loop, introducing the 3 pointers, too. Transition [(r1, a) 

→ r1] is a simplification to consume possible starting symbols a of USLS1. With first symbol b, 

the AFA begin to consume subsequent USLSi. As already described, each time an USLSi from the 

first side of the triangle is consumed, ADF IB and RB are activated. Besides constructing the 

templates of the next 2 sides between states t1 to t2: second side; t3 to t4:third side; ADF IB has 

now the new task to turn the loop by pointer pa. 

 

Each time pa makes a complete turn through the loop, ADF IB executes the following: i) includes 

one new USLS in the loop [(t2, b) → t2 : OT] and another in [(w, d) → w : OT]; ii) insert a 
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transition from the last state of each USLS included before: in the first loop, one that consumes d 

to t3, in the second, a null transitionto TR ; iii) moves pc to a state just one USLS below in direction 

tot1, inserting one transition that consume d from the state pointed by pc to t3; iiii) moves pd to 

point just one USLS “below” in direction to t3, inserting one null transition from the state pointed 

by pd toTR. 

 

Nonetheless, in case ADF OT is activated, it just removes the transition [(w, ε) → TR] to the final 

state, so as to shape is too big, out of tolerance, rejecting the input string. In the same way, too 

small shapes are rejected because the AFA would not find either a d transition to t3, or a null 

transition to final state TR. 

 

 
Figure 16: Example of shapes classified correctly with 20% tolerance. Left (a3b)9(c3b)8d17;  

Right:(a3b)9(c3b)11d20 

We give only two examples of DSLS length errors, since any shape attending the tolerance defined 

by tokens y is accepted, no matter its scale; otherwise it is rejected. Thus, shapes of Fig.16 were 

accepted by the AFA of Fig. 15 with y defining a length tolerance of 20%. Both shapes are easily 

identified visually, though the shape to the right does not close, splitting the contour because of 

length errors. On the contrary, the one to the left presented a smaller contour than the ideal triangle, 

leaving outside the USLS1 of first side. This contour distortion between the two shapes occurred 

because, first, length of the second side changed from 8USLSi to 11USLSi; second, length of third 

side changed from 17d to 20d. 

Implementation and tests of adaptive neighborhoods. 

The adaptive neighborhood associates a set of arcs to a corresponding SLRDA which recognizes 

that set. This topic presents implementation and testing of SLRDA models attending the proposal 

of adaptive neighborhood associated with the regions delimited by arches responsible for their 

contours. There are two main types of these delimiters: concave and convex arches, being possible 

to have a combination of these two types. This text shows only the case of boundaries 

neighborhood delimited by concave arcs because the convex case presents similarities to the 

concave. Adaptive loop of Fig. 9 was the structure used to obtain length correction. In this topic 

the same structure is applied having the number of loop states used by the automaton the meaning 

of reference length for changing its neighborhood adaptively. 

 

The AFA of Fig. 17 recognizes SLRD whose neighborhoods are changed adaptively according to 

their lengths. In place of empty transitions that introduce non-determinism, it is used the marker 𝛥. 

In previous sections, the adaptive loop of Fig. 9 was the structure used to obtain the corrected 
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lengths 𝑙𝐸  by Expression 5. In this topic, the same structure is applied considering 𝑡𝑜 of the loop 

the meaning of length reference to the AFA to change the neighborhood adaptively. 

 
Figure17: AFA initial configuration that implements SLRDA with adaptive neighborhoods 

variable depending of the length of the input SLRD. Each time RA is activated, a 𝛥 transition is 

removed.  

For simplification, the ADF of the AFA of Fig. 17 responsible to build the loop of 𝑡𝑜states is not 

shown. In Fig. 17, ADF B is activated with the first symbol b changing the AFA to Fig. 18, to the 

left, continuing the AFA to consume subsequent USLR in such a way that each USLR from S 

activates both FAD IB e RB. 

 
Figure 18. AFA configuration after activation of ADF B of Fig. 17 is to the left. Digital 

neighborhood is adjusted depending of to of  the adaptive loop by the number of Δ transitions. 

Configuration on the beginning of the third loop circle with state s2 integrated in the topology is to 

the right.  

 

For an input string 𝑆 composed of 𝜆 USLR 𝑈𝑖𝑆: 𝑈𝑖 ; 𝑖 = 1,2, … , 𝜆, the AFA configuration shown 

to the left of Fig. 18 is maintained while1 ≤ 𝑖 < 𝑡𝑜 accepting USLR of the type {𝑎𝑙𝑏: 𝑙 = 2}; but 

when 𝑖 = 𝑡𝑜, ADF IB is activated inserting a new 𝛥 transition in the interconnected sequence of s 

composed of 𝛥 transitions of the AFA. For 𝑡0 ≤ 𝑖 < 2𝑡𝑜, accepted USLR are changed to the range 

{𝑎𝑙𝑏: 𝑙 = 2,3}. For 𝑖 = 2𝑡𝑜, ADF IB is activated inserting a new 𝛥 transition in the AFA changing 

its configuration to the one of Fig. 18-right. Accepted USLR changes to the range {𝑎𝑙𝑏: 𝑙 =
2,3,4}. This process continues in such a way that each 𝑖 multiple of 𝑡0, ADF IB is activated 

inserting one 𝛥 transition to alter the neighborhood.  

 

Summarizing the process, each USLR of S activates ADF IB and RB such that: i) the transitions 

of interconnected sequence of 𝛥 transitions s1, s2, s3... sv that exist in the automata are removed by 

FAD RB (this because the previous USLR cannot have the maximum amount of tokens a related 
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to the AFA neighborhood); ii) FAD IB inserts again the same automaton transitions s1, s2, s3... sv 

removed by FAD RB in order to enable their consume by the following USLR; iii). The FAD IB 

moves a pointer one position ahead in the adaptive loop; iv) Each full turn in the adaptive loop 

made by the pointer, by activation of FAD IB, the following actions are performed: a) Change of 

SLRDA neighborhood by including a transition (sv, 𝛥)→sv+1  incrementing the interconnected 

sequence s1, s2, s3... sv with the state sv+1; b) changing the ADF RB to remove from the AFA, in 

step i) above also transitions connected to state sv+1,  included in the previous step; c) exclusion (s, 

a) →s.RA(sv) transition and insertion of the transition (s, a) →s.RA(sv+1). 

 

The neighborhood is delimitated by concave arc due to the fact that the maximum angle of each 

USLR increases gradually following the angles arctan(2), arctang(3), arctang(4)....arctan(⌊𝜆/
𝑡𝑜⌋)according with the number of states transitions with marker Δ. 

RESULTS AND SUGGESTIONS FOR FURTHER WORK 

Confronting this working with the traditional models without adaptivity, a first aspect is the 

question of the flexibility of the models.The traditional models without adaptivity have to satisfy 

the chord property, rejecting the arches of  Fig. 19 characterized by USLR U range of 

𝑈(𝑏, 𝑎𝑚): 2 ≤ 𝑚 < 5, since to be in agreement with a chord property there must be a pattern of 

consecutive numbers on the runs without presenting irregularities. In Fig. 19, the left arc is encoded 

by 

(𝑎3 𝑏)6(𝑎4 𝑏)5(𝑎5 𝑏)5(𝑎6 𝑏)2𝑎4𝑏 (𝑎3 𝑏)6.  The arch to the right in Fig .19 is encoded 

by(𝑎3 𝑏)6(𝑎4 𝑏)5(𝑎5 𝑏)5(𝑎6 𝑏)5. 

 

 

 
Figure 19. Examples of SLRD accepted by the AFA of Fig. 17 with 𝑡𝑜 = 5. However they are 

not recognized by traditional methods without adaptivity. 

 

About the symbol that occurs isolated on the runs, note that b is maintained on the ache of Fig. 19, 

beginning with USLS of angle arctang(3) related to the x axis, but this angle decrease gradually 

in the subsequent USLR in function of the quantity of tokens a, until a minimum, representing a 

convex arch.Consequently, characterized by invariable behavior traditional methods tend to 

segment digital arches in great quantity of short segments (Feschet, 2008). As for the methods with 

preset values in a range, the number of segmented short segments is reduced, but they lose the 

overall characteristics of the arcs, rejecting the ADSLS of Fig. 19, segregated in many ADSLS. 

Therefore, the dynamic changes in neighborhood of this study, which alters the functionality of 

the algorithms depending on the stimulus, allow an overall better characterization of the arcs. 

Concerning the computational complexity due to limitations of invariable behavior in a 
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predetermined range, the traditional methods tend to divide the digital arcs in some set composed 

of large number of short segments. By significantly reducing the elements of this set, adaptivity 

minimizes the data structures required to represent the arcs. Furthermore, the introduction of 

adaptive tolerances simplifies algorithms compared the one presented by invariable behavior. 

Therefore, the representation of arcs by a set consisting of even smaller number of segments 

minimizes the complexity in time of the adaptive algorithm, besides makes it linear. 

 

It follows that a shape can be represented by a set of ADSLS. The points on ADSLS cannot be 

considered as the dominant points corresponding to first order curvature function. Intersection 

points between ADSLS are candidates for dominant points presenting higher order curvature 

function corresponding to points related to changes of directions. These higher order changes are 

reflected in the changes of the isolated occurring symbol, increasing the curvature of the arch on 

these points. Moreover higher order curvaturearc contains abrupt changes in its curvature in 

relation to the total length of the arch and, therefore, its pattern of curvature variation differs from 

thefirst order arch. 

 

Accordingly with arcs presented in the experiments, the SLRDA acting as explorationautomaton 

operates properly allowing to implement, as continuation of this work, a structure in which the 

exploration automaton should be reconfigured by an adaptive process manager system and a 

navigation automaton with responsibility for analysis of arches with higher order curvature 

function to optimize the global nature of analysis. In this way the local and global aspects of the 

detection process will be optimized simultaneously. With this implementation, backtracking will 

be reduced to a minimum, restricted only to the break points interconnecting SLRDA. Therefore, 

a future scope of the idea involves implementation of a shape classifier incorporating the 

combination of an exploration and a navigation automaton. 

POSITIONING OF THIS RESEARCH ON THE STATE OF THE ART 

This study introduces a method related to the concept of adaptive linearity implemented by 

ADSLS, wherein, for example, irregular arcs can be actually straight when viewed in the proper 

range scale. 

 

One of the features of this research was to emphasize algorithms without backtracking, improving 

the representation of SLRD and their parameters by an adaptive neighborhood. By the 

generalization of this work with the reusing of classic algorithms, as well as applying the known 

syntactic background, adaptivity can integrate other modern existing methods. 

 

Taking into account the work (Neto, 2007), this research involves devices guided by rules with 

multilevel hierarchical adaptivity whose set of rules is variable presenting modifiable adaptive 

functions.Therefore results in an entire evolutionary potential of  this work based on the reuse and 

generalizations of formalisms thathave traditionally been used. 

FINAL CONSIDERATIONS 

Considering variable angles and minute errors of DSLS, to our knowledge, this is the first attempt 
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to introduce AFA in dominant point detection. By traditional techniques, automaton would have 

to be implemented a-priori, with high level of complexity to treat errors that cause imprecise 

models or imprecise scale of DSLS in different angles. 

 

Compared with other methods of digital line representation in dominant point detection, this work 

showed that the formalism presented in (Barros Neto, Junho 2011) incorporates the main 

advantages of the ADSLS formalism: i) Simplicity and relative ease of modeling and 

implementation, associated with high computational power; ii) Models are easy to understand, 

relatively simple to program and flexible to accept changes in their behavior; iii) Longer 

trajectories will dynamically increase the storage mapping memory used; iv) Storage memory 

required to map unknown environments may be reduced drastically by adaptive straight line 

segmentation of trajectories because just two grid coordinates are necessary to describe a specific 

digitized straight line path. 

 

Models of DSLS strings were also presented, associated to the corresponding automaton with 

experiments that demonstrated the simplicity and efficiency of the method, allowing the use of 

traditional syntactic tooling. The expressive power of the ADSLS formalism incorporates 

parameters of DSLS such as angle, length and tolerances to represent adaptive regions of support. 

Basic shapes were used in the experiments that have immediate applications in some areas like 

robotics (Jokesch, Bdiwi, &Suchy, 2014). 

REFERENCES 

Abbasi, H., Olyaee, M., &Ghafari, H. R. (2013). Rectifying reverse polygonization of digital 

curves for dominant point detection.IJCSI International Journal of Computer ScienceIssues, 

10 

Barros Neto, L. C., & Hirakawa, A. R. (2014, Oct). An approach by straight line segment adaptive 

techniques in robot navigation. IEEE Latin America Transactions, 12. 

Barros Neto, L., Hirakawa, A., & Massola, A. (2011, Oct). An adaptive model applied to digital 

geometry to enhance segment straightness. Latin America Transactions, IEEE Latin America 

Transactions, 9. 

Barros Neto, L. C. (Junho 2011). Modelagem em geometria digital aprimorada por técnicas 

adaptativas de segmentos de retas (Doctoral dissertation, Escola Politécnica da Universidade 

de São Paulo (USP)).  

Bhowmick, P., & Bhattacharya, B. B. (2007, September). Fast polygonal approximation of digital 

curves using relaxedstraightness properties. IEEE Transactions on Pattern Analysisand 

Machine Intelligence, 29, 1590–1602.  

Dinesh, R., & Guru, D. (2007). Finite automata inspired model for dominant point detection: A 

non-parametric approach. InternationalConference on Computing: Theory and 

Applications,p. 579-583. 

Feschet, F. (2008, December). The lattice width and quasi straightness in digital spaces. ICPR 

2008, 19th International Conference on Pattern Recognition.  In Anais... (p. 1-4). Tampa, FL.  

Freeman, H. (1970). Boundary encoding and processing. Picture Processing and Psychopictorics, 

241-266. (B.S. Lipkin and A. Rosenfeld, editors, New York, Academic Press, 1970) 



European Journal of Computer Science and Information Technology 

Vol.3, No.1, pp.87-107, March 2015 

             Published by European Centre for Research Training and Development UK (www.eajournals.org)  

107 

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online) 

 

Gao, Y., & Leung, M. K. (2002, February). Human face profilerecognition using attributed string. 

Pattern Recognition,35(2), 353-360.  

Jokesch, M., Bdiwi, M., &Suchy, J. (2014, Oct). Integration of vision/force robot control for 

transporting different shaped/colored objects from moving circular conveyor. In IEEE 

international symposium on robotic and sensors environments (ROSE) (p. 78-82).  

Klette, R., & Rosenfeld, A. (2004). Digital geometry: geometricmethods for digital picture 

analysis (Elsevier, Ed.). MorganKaufmann. 

Largeteau-Skapin, G., & Andres, E. (2006). Two discreteEuclidean operations based on the 

scaling transform. InS. Verlag (Ed.), Anais... (Vol. 4245 LNCS, p. 41-52). 

Szeged.Lebedev, V. I. (2004, July). The accuracy of the objects position 

measuring in an image. In Anais... (Vol. 35; Part 1, p. 45 -47). Istanbul. 

Neto, J. J. (2007, Novembro.). A small survey of the evolution of adaptivity and adaptive 

technology. IEEE Latin AmericaTransactions, 5(7), 496-505. 

Prasad, D., &Quek, C. (2013, Dec). Comparison of error bounds for non-parametric dominant 

point detection. In 2013 9th international conference on Information, communications and 

signal processing (ICICS) (p. 1-5).   

Prasad, D. K. (2013). PRO: A novel approach to precision and reliabilityoptimization based 

dominant point detection. Journalof Optimization, 2013, 15. 

Ramos, M. V. M., Neto, J. J. & Ítalo Santiago Vega. (2009). Linguagens Formais. Bookman. 

Shwetha, D., &Ramya, S. (2014, August). Comparison of smoothing techniques and recognition 

methods for online kannada character recognition system. In IEEE international conference 

on advances in engineering &technology research (ICAETR - 2014). 

Sousa, M. A. A., &Hirakawa, A. R. (2005). Robotic mapping and navigation in unknown 

environments using adaptive automata. In international conference on adaptive and natural 

computing algorithms, Coimbra, Portugal, 2005. 

Veelaert, P. (2005). Uncertain geometry in computer vision. In E. Andres, G. Damiand, & P. 

Lienhardt (Eds.), discrete geometry for computer imagery (Vol. 3429, p. 359-370). Springer 

Berlin Heidelberg. 

Woo, D.-M., & Park, D.-C. (2011, May). Stereoscopic building reconstruction using high-

resolution satellite image data. In computer and information science (ICIS), 2011 IEEE/ACIS 

10th international conference on  computer and information science (ICIS), (p. 194-198).  

Wu, W.-Y. (2003). Dominant point detection using adaptive bending value. Image and Vision 

Computing, Elsevier, 21. 

You, K. C., & Fu, K. S. (1979, June). A syntactic approach to shaperecognition using attributed 

grammars. IEEE transactions on systems, man, and cybernetics, 9(6), 334–345.  

 

 

 

 

 


