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ABSTRACT: This paper is a study of two-group classification models for binary variables. 

Eight classification procedures for binary variables are discussed and evaluated at each of 

118 configurations of the sampling experiments. The results obtained ranked the procedures 

as follows: Optimal, Linear discriminant, Maximum likelihood, Predictive, Dillon Goldstein, 

Full multinomial, Likelihood and Nearest neighbour. Also the result of the study show that 

increase in the number of variables improve the accuracy of the models. 
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INTRODUCTION 

Estimation of error rates has received considerable attention in the literature. The task of 

classification is to classify unknown objects into predefined classes based on their observed 

attributes using a classification model learned from a set of training data. Many applications 

such as characters recognition, decision-making and disease diagnosis, can be viewed as 

extensions of the classification problem (Hen and Kamber 2001). A classification instrument 

can be modeled using different structures such as decision graphs, decision trees, neural 

networks and rules. Reducing the processing time and increasing the classification rate are 

the two main issues in the classification problem. We consider a classical problem of 

discriminant analysis: an individual is to be allocated to one k distinct classes w1,…wc, whose 

members are described by an r-component vector of binary variables X= (x1,x2…xr). These 

binary variables can be viewed equivalently as a single multinomial variable having S = 2r 

states. The problem of classification is that of assigning item(s) into one of k, k ≥2 known 

populations assuming that the items actually belong to one of the populations. Suppose only 
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two populations are admitted with infinite number of individual objects. Let there be r 

characteristics of interest with corresponding measurement variables X1, X2…Xr, r ≥1. Let 

the response vector of individual objects in 1  be X1 = (X11, X12…X1r)
1 and in 2  be               

X2 = (X21, X22…X2r)
1. Suppose we find an object 0 with measurement vector X0 = (X01, 

X02…X0r) outside 1  and 2 . The problem is how to classify 0 into 1  and 2  in an 

optimum fashion. The measurement vector X can be discrete or continuous. It can also be a 

mixture of discrete and continuous variables. In this study, our interest is about X whose 

arguments are discrete. The problem is to classify 0 with measurement vector X0 into 1  

and 2 . In this inferential setting, the researcher can commit one of the following errors. An 

object from 1  may be misclassified into 2 . Also an object from 2  may be misclassified 

into 1 . If misclassification occurs, a loss is incurred. Let c(i/j) be the cost of misclassifying 

an object from j  into i . The objective of the study is to find the ‘Best’ classification rule. 

“Best” here means the rule that minimizes the expected cost of misclassification (ECM). 

Such a rule is referred to as the optimal classification rule (OCR) in this study we want to 

find the OCR where X is discrete and to be more precise, Bernoulli. Whereas classification 

rules with optimal properties for discriminant problems with multivariate normally distribute

d attribute variables are well known (Wald 1944, 1949; Smith, 1947; Adebanji, Adeyemi and 

Iyaniwura, 2008; Oludare, 2011), alternative rules be more appropriate if some of the 

attributes are skewed. Most of the studies that compared non-normal classification methods 

with normality-based methods for various different data conditions have assumed equal 

misclassification costs across groups. Hence, it is not clear to what extent the conclusions in 

these studies can be generalized to typical problems with distributions that are skewed with 

unequal misclassification costs across groups. The purpose of the current study is to establish 

guidelines for choosing an appropriate classification method if the problem at hand is 

characterized by Bernoulli multivariate data. To achieve this objective, several Monte Carlo 

simulation experiments are conducted to compare the performance of some traditional 

classification methods designed specifically to handle problems with Bernoulli multivariate 

data. This study is limited to the two-group classification problem. 
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CLASSIFICATION PROCEDURES 

The Optimal Classification Rule 

According to Onyeagu (2003), let 1  and 2 be any two multivariate Bernoulli populations. 

Let iq  be the prior probability of i  2,1i  with 1
21
 qq  and probability mass 

Function )(xfi
. Suppose that we assign an item with response pattern X into 1  if it is in 

some region 1R  and to 2  if it in some region 2R  where RRR  21 . The expected cost of 

misclassification is given by: 
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The optimal rule is one that determines xR  such that ECM is a minimum. 
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Therefore the optimal classification rule is: classify an item with response pattern X0 into 1  

if 
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Otherwise classify the item into 2 . Without loss of generality, we can assume that 

)1/2()2/1( cc  . Then minimization of ECM becomes minimization of the probability of 

misclassification p(mc). The optimal rule reduces to classify an item with measurement X0 

into 1  if  1
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otherwise classify into 2 . Since X is multivariate Bernoulli with ,0ijp  2,1i  

rj ,...2,1 , the optimal rule is: classify an item with response pattern X into 1  if  
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otherwise classify into 2 . 

For the optimal classification rule, we considered two cases: 
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Case I known parameters 

(i) General case where )...,( 21 iriii pppp   

(ii) Special case where )...,( iiii pppp   

(iii) Special case (1b) with additional assumption that 10,21  pp . 

Case 2 Unknown parameters 

(i) General case  )...,( 21 iriii pppp   we estimate 1p  and 2p  by taking training 

samples of size 1n  and 2n  from 1  and 2  respectively. 

(ii) Special case where )...,( iiii pppp  . We also estimate 1p  and 2p . 

(iii) Special case (2ii) with 10,21  pp , we take training samples of size 2n  

from 2  and estimate 2p . For a fixed value of 21, pp    for case 1(ii) the 

classification rule reduces to: classify item with response pattern X into 1 if: 
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otherwise classify into 2  

The probability of misclassification is given by: 
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for case 1(iii) the probability of misclassification is 
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For cases 2(ii) and 2(iii) the formula remains the same except that the parameters are 

estimated by their MLE estimates. 

 

Full Multinomial Rule 

Suppose we have a d-dimensional random vector ),...( 1

1

dxxx   where each 

djx j ,...1,   assumes one of the two distinct values: 0 or 1. The sample space then has a 

multinomial distribution consisting of the 2d possible states. Given two disjoint populations,  

1  and 2  with priori probabilities 1p  and 2p , the density is  

)()()( 2211 xfpxfpxf          2.2.1 

The two group problem attempts to find an optimal classification rule that assigns a new 

observation x  to 1  if   

1221 /)(/)( ppxfxf         2.2.2 

When x  has only two states, it will be a binomial random variable with )(xni  observation 

from i  and expected value .2,1),( ixfnp ii  Estimates for prior probabilities can be 

obtained by 
n

n
p i

i




, where 21 nnn   represents the total number of sample 

observations. The full multinomial model estimates the class-conditional densities by  

n

xn
xf i

i

)(
)(  , .2,1i        2.2.3 

where )(xni  is the number of individuals in a sample of size in  from the population having 

response pattern X . The classification rule is: classify an item with response pattern X into 

i  if 
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The full multinomial rule is simple to apply and the computation of apparent error does not 

require rigorous computational formula. However, Pires and bronco (2004) noted as pointed 

out by Dillon and Goldstein (1978) that one of the undesirable properties of the full 

multinomial Rule is the way it treats zero frequencies. If 0)(1 xn  and 0)(2 xn , a new 

observation with vector X will be allocated to 2 , irrespective of the sample sizes 1n  and 

2n . 

The Predictive Rule 

If the non-informative conjugate prior distribution for the parameter Pi of the multinomial 

model is chosen, that is the Dirichlet distribution with parameter 1 , then the posterior 

distribution will be a Dirichlet distribution with parameter zi+1, where zi = (ni1,…nis)
T.  (Note 
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which leads to the predictive rule (or the P-rule) 
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Classify in 1  if: 
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Classify randomly if: 
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Once again for n1 = n2, this rule is equivalent to the M-rule. The P-rule also avoids the zero 

frequency problems. For instance n1(x) =0 and n2(x) < (n2+s)/ (n1+s)-4 leads to classification 

in 1 .   

The Likelihood Rule  

Consider the generalized ratio test for the hypothesis H0: X, X11...X1n ~ f1(x) and X21... 

X2n~f2(x) against H1:   X11...X1n1 ~ f1(x) and X21...X
22n  ~ f2(x). As was proposed by 

Anderson (1982), Pires & Bronco (2004) and Onyeagu et al (2013) found that the likelihood 

ratio criterion also handles the problem of zero frequency. For multinomial model, they 

proposed a test statistic that is a function of X and is given by:   
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This rule fails to take account of several factors that may be important in practice. These 

factors are the differential prior- probabilities of observing individuals from the two 

populations and differential cost incurred by misclassification and a-prior probabilities and if 

n1(x) =0 and n2(x) =0, the classification rule becomes: Classify item with response pattern 

into 1 if L(x) >1 and into 2  L(x) <1.  For n1 =n2, this rule falls back to the Full 

Multinomial Rule. The L Rule also solves the zero frequency problem. A new observation X 

with n1(x) =0 will be classified in 1 if and only if 
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where c is the value of the second fraction in (2.4.1)  

The Dillon-Goldstein Rule 

Dillon and Goldstein (1978) proposed the following rule as a result of the problem arising 

from zero frequency. The rule called the D-rule is based on Matusita’s distribution distance 

using the notation: ni(x) = nij if x belong to state j. The rule is classify item into 1 if: 

 

 

2

1

2

1

2

1

2

1

2

1

)1(

)1(

)(1(

)()1(

21

12

2121

2112



























nn

nn

nnnn

nnnn

jk

kkjj

jk
kkjj

        2.5.1 

and to 2 if  

 

 

2
1

2
1

2
1

2
1

2
1

)1(

)1(

)(1(

)()1(

21

12

2121

2112



























nn

nn

nnnn

nnnn

jk

kkjj

jk
kkjj

                                   2.5.2    

randomly classify if  

 

 

2

1

2

1

2

1

2

1

2

1

)1(

)1(

)(1(

)()1(

21

12

2121

2112



























nn

nn

nnnn

nnnn

jk

kkjj

jk
kkjj

     2.5.3 

Note that if 21 nn  , the D-rule reduces to the Full Multinomial Rule. For 21 nn   and 

01 jn  and 02 jn  the rule becomes: classify x into 1  if: 
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Nearest Neighbour procedure 

Hills (1967) introduced perhaps the simplest nearest neighbour estimator for binary data, 

which classifies a particular response vector x based on the number of cells in response 
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vectors y that differ from x. Specifically, let k be the number of cells in which x and y differ. 

Then define })()/({ 1 kyxyxyR jjjj   to be a rule which classifies x if each of its cells 

differs by no more than k components. That is, classify x into 1  if:  

 
jj R

j

R

j

n

yn

n

yn

2

2

1

1 )()(
            2.6.1  

and into 2  otherwise.  

For example, with d =3 and x =(111), the neighbours of order k =1 are R111 = 110, 101, 011. 

Note that k =0 reduces to the full multinomial model. In practice, one simply needs to 

construct the table of frequencies for all possible pattern of x and use a counting procedure 

over the set Rj to form the sample-based likelihood ratio for classification purpose. If the cell 

count for the jth cell is nij, then the nearest neighbour procedure assigns the observation to 

1  if            
1

2

22

1

/2

/

p

p

nnjn

nnn

A

j

A
jiij


























      2.6.2 

where A is the set of neighbour of state j. Hills comments that the estimate of the likelihood 

ratio has less sampling variability than the simple method using cell frequencies. 

The Linear Discriminant Rule 

The linear discriminant function for discrete variables is given by 

 )()()()(
12122

1
12 kk

kj

jjk

kj

jj
kj

ppsppxsppxL


       2.7.1  

where 
kjs are the elements of the inverse of the pooled sample covariance matrix, j

p
1



 and 

j
p

2



 are the elements of the sample means in 1  and 2  respectively. The classification rule 

obtained using this estimation is: classify an item with response pattern X into v if 
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 0)()()( 12122
1

12 


 kk

kj

jj

j k

k

kj

jj
kj

ppsppXspp            2.7.2                        

and to 2  or otherwise. 

Maximum Likelihood Rule (ML Rule) 

The maximum likelihood discriminant rule for allocating an observation x to one of the 

population n ...1  is to allocate x to the population which gives the largest likelihood to x. 

that is the maximum likelihood rule says one should allocate x to j  when 

 )(max xLL ii    Anderson (1984) 

Theorem: if i  is the ),( ipN   population, gi ...1  and 0 , then the maximum 

likelihood discriminant rule allocate x to j  where },...1{ nj  is that value of i  which 

minimized the Mahalanobis distance )()( 11    xx  where 2g  the rule allocate x to 

1  if  0)(1   x  and 0)}({ 2

_

1

_

2
11  xxx , where )( 21

1   
 and 

)( 21    and to  2  or otherwise. 

Application with life data 

The data used in this example was collected at the University of Nigeria Teaching Hospital, 

Enugu. The data is made up of the following categories of heart disease patients.   (i) Heart 

failure, (ii) Hypertensive heart failure, (iii) Hypertensive heart failure with stroke in evolution 

(iv) congestive heart failure (v) cardiovascular accident. Here, there are two populations (i) 

those who survived the attack, (ii) those that died. Three variables were used (i) systolic 

blood pressure (ii) Diastolic blood pressure (iii) Heart rate. The following measurements 

were obtained from 264 patients, 174 in the first population )( 1 and 90 in the second 

population )( 2  respectively. The systolic blood pressure is normal if it is less than 

140mmHg i.e 90-140. The diastolic blood pressure is normal if it is less than 90mmHg i.e 60-

90. The heart rate is normal if it is less than 100 beats per minute i.e (60-100). With the above 

information we dichotomized the measurements. The variables are:                              
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Variable 1: systolic blood pressure =1 if it is less than 140mmHg = 0 otherwise.              

Variable 2: diastolic blood pressure = 1 if it is less than 90mmHg = 0 otherwise.            

Variable 3: heart rate = 1 if it is less than 100 beats per minute = 0 otherwise.                       

Let x=(x1,x2,x3) denote the total response to the measurements and this leads to the following 

28 response patterns: 000,100,010,110,001,101,011,111.The frequency of each of these 

response patterns in 1  and 2  are recorded in the following table. 

State                          Survival group             Non survival group          

(x1,x2,x3)                      Frequency                           Frequency 

000      23     9               

100       8     3                                   

010      5     6                                   

110     18     20                                 

001     58     25                                 

101     11      3                                  

011      8      5                                    

111      43     19                            

Total                          174     90  

We have used the whole data to compute as follows: 

i

n

k

ijk

ij
n

x

p

i






 1
 

 6897.0,4253.0,4598.0
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120
,

174

74
,

174

80
1 












p  

 5778.0,5556.0,5000.0
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52
,

90

50
,

90

45
2 












p  

Using these estimates, we obtained the classification rule as classify the item with response 

pattern into 1  if 



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
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Otherwise classify the item into 2 .  

Substituting the values of 
jp1
 and 

jp2
 above we have 







































3103.0

4222.0

5747.0

4444.0

5402.0

5000.0

5778.0

4222.0

3103.0

6897.0

5556.0

4444.0

5747.0

4253.0

5000.0

5000.0

5402.0

4598.0
321

In

xInxInxIn

 

0265.04850.05244.01611.0 321  xxx  

Response Pattern             Classification 

000         1                                 

100         2                                 

010         2                                    

110         2                                   

001         1                                   

101         1                                     

011         2                                   

111         2  

 5778.0,5556.0,5000.0/)101(),001)(000()2/1( 2 











pxpp  

 232221232221232221,


 pqppqqqqq  

 
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)5778.04444.05000.0128387.0128387.0

5778.04444.05000.04222.04444.05000.0



 XX

XXXXX

 

 6897.0,4253.0,4598.0/)1,1,1(),1,1,0(),0,1,1(),0,1,0(),0,0,1()1/2( 1 









pxpp  

131211131211131211131211131211 , pppppqqppqpqqqp
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XXXXX

XXXXX
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50730.0

50729566.013487286.01584565.00606800.00712905.00819958.0




 

   38016.0
264

90
50730.0

264

174
)( 



mcp  

 
46396.0

12960.033436.0




  

Suppose we took the first 50 patients from each group and computed a classification rule. The 

frequency distribution is shown below. 

State                         Survival group         Non survival group                     

(x1,x2,x3)                         Frequency                         Frequency 

000      4               3                               

100      1               2                                      

010      1               3                                           

110      3     12                                             

001     22     16                                        

101      2      1                                          

011      1      2                                           

111      16     11                              

Total                 50     50  

The population parameters are not known, so they are estimated by their maximum likelihood 

estimators 
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
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
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Using the estimates above we obtained the classification rule 3BR : classify the item with 

response pattern x into 1  if 
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368026.011094213.16592278.03211979.0 321  xxx  

Otherwise classify to 2 . 

An item with any of the response patterns are classified as follows: 

Response Pattern               Classification 

000         2                                   

100         2                                  

010         2                                  

110         2                                      

001         1                                          

101         1                                           

011         1                                    

111         2  

 )60.0,56.0,52.0(/)011(),101(),001()2/1( 2 

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 232221232221232211 ,
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The plug-in estimate of the error rate is given by 
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 
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


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



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With 7021  nn being the seventy patients in the sample, the frequency distribution is 

shown below: 

Simulation Experiments and Results                                                                 

The eight classification procedures are evaluated at each of the 118 configurations of n, r and 

d. The 118 configurations of n, r and d are all possible combinations of n =20, 40, 60, 80, 

100, 200, 300, 400, 600, 700, 800, 900, 1000, r =3, 4, 5 and d = 0.1, 0.2, 0.3, and 0.4. A 

simulation experiment which generates the data and evaluates the procedures is now 

described. 

(i)  A training data set of size n is generated via R-program where 21
nn     

observations are sampled from 1 , which has multivariate Bernoulli distribution with 

input parameter 1p  and 22
nn   observations sampled from 2  which is multivariate 

Bernoulli with input parameter rjp ...1,2  . These samples are used to construct the 

rule for each procedure and estimate the probability of misclassification for each 

procedure is obtained by the plug-in rule or the confusion matrix in the sense of the 

full multinomial. 

(ii)  The likelihood ratios are used to define classification rules. The plug-in estimates of 

error rates are determined for each of the classification rules. 

(iii)  Step (i) and (ii) are repeated 1000 times and the mean plug-in error and variances for 

the 1000 trials are recorded. The method of estimation used here is called the 

resubstitution method. 
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The following table contains a display of one of the results obtained 

Table 4.1(a) Effect of input parameters P1 and P2 on classification rules at various 

values of sample size and Replications (mean apparent error rates) 

 P1 = (.3, .3, .3)    P2 = (.5, .5, .5) 

Sample 

size 

Optimal Full  M. PR LIK DG NN LD ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.33634 

0.34554 

0.35036 

0.35211 

0.35490 

0.35621 

0.35671 

0.35740 

0.35727 

0.35772 

0.35794 

0.35749 

0.31571 

0.33076 

0.33915 

0.34689 

0.34958 

0.35425 

0.35392 

0.35627 

0.35666 

0.35641 

0.35735 

0.35697 

0.31557 

0.33145 

0.34231 

0.34657 

0.35148 

0.35400 

0.35371 

0.35582 

0.35611 

0.35664 

0.35668 

0.35676 

0.31846 

0.33088 

0.34068 

0.34619 

0.35063 

0.35339 

0.35519 

0.35562 

0.35619 

0.35669 

0.35709 

0.35623 

0.31889 

0.33043 

0.34099 

0.34659 

0.35044 

0.35334 

0.35384 

0.35597 

0.35653 

0.35655 

0.35741 

0.35678 

0.45150 

0.42851 

0.40644

5 

0.39735 

0.38378 

0.37477 

0.36763 

0.36208 

0.36024 

0.35984 

0.35938 

0.35810 

0.33953 

0.34734 

0.35154

5 

0.35295 

0.35578 

0.35648 

0.35694 

0.35768 

0.35738 

0.35782 

0.35811 

0.35748 

0.33616 

0.34488 

0.34985 

0.35166 

0.35491 

0.35604 

0.35669 

0.35731 

0.35724 

0.35767 

0.35789 

0.35744 

p(mc) = 0.358 

Table 4.1(b) Effect of input parameters P1 and P2 on classification rules at various 
values of sample size and Replications (actual error rates) 

 P1 = (.3, .3, .3)   P2 = (.5, .5, .5)                                 )()( mcpmcp


  

Sample 

size 

Optimal Full  M. PR LIK DG NN LD ML 

40 

60 

100 

140 

200 

300 

0.04817 

0.03955 

0.03060 

0.02656 

0.02225 

0.01826 

0.05434 

0.04613 

0.03560 

0.03346 

0.02702 

0.02429 

0.05273 

0.04508 

0.03680 

0.03158 

0.02821 

0.02352 

0.05440 

0.04463 

0.03631 

0.03318 

0.02780 

0.02491 

0.05485 

0.04598 

0.03714 

0.03379 

0.02871 

0.02443 

0.09480 

0.08479 

0.07205 

0.06370 

0.05086 

0.04129 

0.04811 

0.03950 

0.03014

9 

0.02655 

0.02241 

0.01825 

0.04735 

0.03943

4 

0.03063 

0.02652 

0.02243 

0.01825
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400 

600 

700 

800 

900 

1000 

0.01655 

0.01270

9 

0.01178 

0.01136 

0.01058 

0.01106 

0.01955 

0.01763 

0.01470 

0.01511 

0.01346 

0.01401

8 

0.01956 

0.01688 

0.01424 

0.01486 

0.01307 

0.01419 

0.02064 

0.01759 

0.01398 

0.01575 

0.01405 

0.01294 

0.01999 

0.01613 

0.01426 

0.01464 

0.01381 

0.01330 

0.03257 

0.02266 

0.01824 

0.01649 

0.01385 

0.01243 

0.01661 

0.01283 

0.01182 

0.01139

6 

0.01062 

0.01102 

0 

0.01660 

0.01277 

0.01174 

0.01135 

0.01059 

0.01103 

From table 4.1(a) and (b), optimal classification rule ranks best followed by linear 

discriminant analysis, maximum likelihood (ML), Nearest neighbour (NN), likelihood ratio 

(LIK), Dillon-Goldstein (DG), Full multinomial and predictive rule. The apparent error rate 

for the Nearest neighbour (NN) is larger than the other rules. The order of performance is as 

follows: 

Classification Rule     Performance 

Optimal (OP)       1 

Linear Discriminant Analysis (LDA)    2 

Maximum Likelihood (ML)     3 

Nearest Neighbour (NN)     4 

Likelihood Ratio (LIK)     5 

Dillon-Goldstein (DG)     6 

Full Multinomial (FM)     7 

Predictive Rule (PR)      8 

 

DISCUSSION OF RESULTS 

This study attempted to gain insight into the performance of some discrete classification 

techniques applied to binary data pertaining to Bernoulli multivariate distribution. The data in 

question was of binary nature and had a good number of sparse states. The eight classification 

procedures assuming multinomial structures are expected to capture more of the available 

information than the classical procedures. The results of Glick (1972, 1973) who considered 

the general problem of sample based classification induced through density estimates showed 

that the error rates for multinomial rules converged exponentially to the optimal Baye’s error 

rate, favours the use of multinomial procedures over other methods. The result of this work is 
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in line with the above submissions. This favoured multinomial approach, also has the 

advantages of being easy to understand and implement, asymptotically optimal and yield the 

unique minimum variance unbiased estimates of state probabilities. In addition, in line with 

previous results, increased sample size, effect size and discrepancy in the ratio of sample 

sizes all lead to increases in overall classification accuracy. In comparing accuracy among the 

classification rules, optimal, LDA and maximum likelihood displayed higher classification 

accuracy. The results from the present studies provide strong implications for the practical 

use of classification rules. Research into misclassification analysis is very important for 

understanding when to use which classification method, and the implications of using one 

method over another. A better understanding of these concepts will eventually lead to better 

accuracy in classification and better accuracy for classification should be a goal for all areas 

of research that use classification methods. At each of the configurations, the classification 

rule that has minimum variance is declared the “best” 

CONCLUSION 

We have observed several marginal trends. We have observed the good performance of the 

optimal classification rule, the linear discriminant analysis and maximum likelihood criterion 

rule. The full multinomial, the likelihood and nearest neighbour rule were the worst when one 

considers their plug-in estimates of error rates from the exact error rates. From the analysis so 

far carried out, the procedures can be ranked as follows: optimal, linear discriminant, 

maximum likelihood rule, predictive rule, Dillon Goldstein rule, full multinomial, likelihood 

and nearest neighbour rule. Secondly, we concluded that it is better to increase the number of 

variables because accuracy increases with increasing number of variables. 
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