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ABSTRACT: This article developed an appealing technique for n2k factorial designs that 

would generate more compact and more efficient computational results on n2k complete 

experiments that would be of immense benefit to students and researchers. The article 

leveraged on existing body of knowledge on 2k factorial designs to contrive and exploit a series 

of orthogonal and block diagonal matrices, which formed the basis for the statements and 

proofs of envisaged results on complete n2k experiments. The research effort culminated into 

statements and proofs of what the researcher referred to as Ukwu’s theorem and its corollary. 

These would elucidate the design process, offer computational advantages on the prosecution 

of complete n2k experiments, as well as enhance their mathematical appreciation. The utility 

and applicability of the results of the investigation should be multi-disciplinary in nature and 

scope. 
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INTRODUCTION 
 

Factorial Designs 

Factorial designs can be likened to dials whose level settings control process characteristics. A 

large number of processes are impinged upon and impacted by myriad factors, some of which 

are controllable, and others characterized by complete randomness and lack of controllability. 

The kernel of factorial designs is the random implementation of “standard” level combinations 

of the controllable factors, with a view to “optimizing” desired specified process characteristics 

via statistical estimation. Factorial designs are appropriate experimental designs when there are 

several factors to be investigated at two or more levels, under the assumption that interaction 

of factors may be important. Design matrices constitute the basic structure whose entries or 

components represent treatment combinations of several factors, their interactions and output 

responses, the latter of which are usually organized in contiguous output response columns. 

This structure facilitates the investigation of several factors at several levels by enabling the 

running of all combinations of factors and levels.  

 

Factorial designs are extensions of the two-way ANOVA designs that seek to accomplish the 

following tasks:  

(i) Estimation and comparison of effects of several factors usually referred to as the main 

effects of these factors. These effects are usually denoted by ' and '
i j

s s  in two-way 

ANOVA designs. 

(ii) Estimation of possible interaction effects, denoted by ( ) '
i j

s  with replicate observations 

or measurements. 

(iii) Estimation of variance via int, andMSE SS SS  
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(iv) Testing the significance of main and interaction effects and establishing confidence 

intervals for those effects, using obtained estimates in conjunction with the F- and t- tests. See 

Juran and Gryna (1988), Farnum (1994) and Ukwu (2014) for these and further discussions on 

factorial designs. 

     

Factorial designs have widespread applicability in research, quality control circles and in 

Industry. The pursuance of the tasks set forth in (i) through (iv) is referred to as a complete 

factorial experiment.  

 

THEORETICAL UNDERPINNING 
 

Experimental runs (experimental trials) 

A treatment combination (a single realization of joint level settings of the factors) is called an 

experimental run. For example, if pressure, P, temperature, T and relative density, G are factors 

whose effects on the shrinkage factors of condensate of some liquid hydrocarbon are being 

investigated, then the vector setting (G, P, T)  (0.7, 100 bars, 225 0F ) is an experimental run 

or trial for the three-factor experiment-investigation of the effects of pressure, temperature and 

relative density on shrinkages of the liquid hydrocarbon. 

 

Minimum number of experimental runs for a complete factorial experiment 

The minimum number of such runs is the product of all the levels of the factors. Thus, if factor

( )  has  levels
j j

F l ; 1, 2, , ,j k  the minimum number of runs equals:                    

 

                                                                 
1

, (1)
k

j

j

N l


     

assuming that 
1 2
, , ,

k
F F F  are the only factors of interest in the experiment. The factorial 

experiment is then referred to as 
1

k

j

j

N l


   factorial design. 

                                                 (An 
1 2

by by by
k

l l l  factorial design).                                      

     For example, a 4 by 5 by 6 (4*5*6) factorial design identifies a factorial experiment with 3 

factors: 
1 2 3
,  andF F F  say, and 4, 5, and 6 levels for 

1 2 3
,  andF F F  respectively.   

 

Prohibitive number of runs and need for pruning 

Ideally, the largest feasible set of factors should be used in initiating an experimental 

investigation. However, the impracticality of using the full set is better appreciated by the 

multiplicative rule for the number of runs expressed in (1). Evidently, for large problem sizes, 

the computing complexity associated with prosecuting such an envisaged exercise would 

consume or exhaust available resources for the study, even before its completion (given several 

factors with high level sizes). 

 

 The need to prune to size, the number of runs becomes imperative. This can be achieved, 

among other possibilities, by using exactly two levels for each factor. In this case, (1) evaluates 

to  

1

2 2 .
k

k

j

N


   

http://www.ea-journals.org/


International Journal of Mathematics and Statistics Studies  

Vol.2, No.2, PP.13-27, June 2014 

     Published by European Centre for Research Training and Development UK (www.ea-journals.org) 

15 
 

Such a factorial experiment is commonly referred to as a 2k factorial design. In other words, a 

factorial experiment with k factors, each of which has 2 levels is called a 2k factorial design. 

As established already, this design has 2k runs or trials. 

In a situation where n replications are allowed for each cell, the design is referred to as n2k 

factorial design. In this case, suppose the thj treatment sample is of size
jn , then the total 

number of treatments in all samples is given by 
1

k

j

j

N n


  

 

Identification of individual runs (coding scheme for factor levels) 

There are four coding schemes popularly used to identify individual runs or vectors of 

treatment combinations. These are: 

(i)      Geometric coding scheme 

The convention adopted in this scheme is to assign a plus (+) sign to the “higher” level setting 

of each factor and a minus ( – ) sign to the other (“lower level”). Thus, each main effect column 

intersecting the 2k  rows constituting the 2k runs has exactly 2 1k  minus signs. The order in 

which these signs are distributed in each of the columns of main effects is of extreme 

importance; it is at the heart of such design considerations. The following standard order, Table 

1, also called Yate’s order is prevalent in the literature. 

1

1

1

1 2 3 4 5

Run Factors Response

 number

1

2

3

4

2

2 1

2 2

2 1

2

 

k

k

k

k

k

k
F F F F F F













   

   

   

  

 

   

  

   

   

  

 

 

 



 



  

   

1

1

1

1

2

3

4

2

2 1

2 2

2 1

2

Top

half

(TH)

Bottom

half

(BH))

k

k

k

k

k

y

y

y

y

y

y

y

y

y

y





















  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
     
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Table 1: Standard order (Yate’s order) Design matrix for an unreplicated 2k factorial design. 

   

“–”and “+” denote low and high level settings respectively. Here, the
jF columns;  

1, 2, ,j k  

are the main effects columns. The F j column is characterized by a string of alternating 1
2

j  

(–) and (+) signs for 1, 2, ,j k . The (–) sign initiates the process. Note that there is only one 

response column (response vector) owing to the fact that the observations are unreplicated (not 

repeated). 

The 2k runs should be conducted in random order to minimize the effect of possible biases due 

to non-randomization of the runs. Put another way, the running of the design matrix should be 

randomized in order to minimize the effect of extraneous variables from being mistaken for, or 

confounded with the main and interaction effects. With n replications per cell in a 2k factorial 

design, there are exactly n2k runs (treatment combinations or level settings) with n response 

columns 1, 2, ,;cy c n  

yielding the response matrix  

                                           ( ); 1, 2, , 2 ; 1, 2, ,
k

rn
y r c n   

 with corresponding row sums ; 1, 2, , 2 .
k

rR r   This situation is depicted as in the table 

below. 

 

11 12 1 1

21 22 2 2

2 1 2 2 2 2

Response matrix Row sums     

 

k k k k

n

n

n

y y y R

y y y R

y y y R

 
 
 
 
 
  

 

 

Table 2: Response matrix and corresponding row sums for a replicated factorial design 

in standard (Yates)                           order. 

 

This is an n by 2k matrix, with row r sum, Rr  given by:  

                                                               
1

, 1, 2, , 2 . (2).
r

n
k

rc
c

R y r


   

Given such a replicated design, the run numbers and factor columns are preserved but the 

response vector y is replaced by Table 2 to obtain the appropriate design matrix in an increasing 

order of run numbers, matrix of response columns and a vector, R of matrix row sums(R is a 2k 

by 1 matrix). See Farnum (1994). 

 

Contrasts:  

These are the signed sums of elements of the row aggregated response columns after the signs 

of the specified effects column have been assigned the response row sums.  

     Following the Geometric notation, + and – signs are used to denote the levels of each factor. 

A “+” denotes the higher-level setting, and a “–” the lower. For example, for temperature 

settings at levels 100 oC and 90 oC, “+” denotes the temperature at 100 oC and “–” that at 90 
oC. 
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Main effects: 

The main effect of any factor is the average effect of that factor: the average effect of the factor 

at the higher-level settings minus the average effect at the lower-level settings.  

 

 

 

Interaction effects: 

The interaction between two factors and
i j

F F  (average effect of 
i

F  for the higher-level setting 

of 
i

F  minus the average effect of 
j

F  for the lower level setting of 
j

F . 

                    
1

Contrast for factor or interaction
Main effect or interaction (3).

2
k

n


  

                                                                 (sum of the components of the aggregated 

response columns after being appended with the signs of the factor or interaction column) 

divided by  1
2

k
n

 , (where, n is the number of replicates)   

                                sgn (Factor) sgn (Interaction). . ,
T T

y y   

where Factor is the vector of signs in the factor’s column of the design matrix. Ditto for 

sgn (Interaction) . ,
T

y  

for the interaction column of interest.  

 

Precise form of each estimated effect: 

Each estimated effect is a statistic of the form  ,
j j

c c
 
  where: 

effect's column average (column  ) ,  at the higher-level settings

effects column average at the lower level settings

.

.

j

j

jc

c








 

There are altogether 1
2

k   main and interaction effects and these are assumed (following the 

standard order) to be located in columns  j = 1 through 1
2

k   of the design matrix.  

 

Error estimation: 

The need to estimate the error associated with the estimates  
j j

c c
 
  cannot be 

overemphasized. In this regard, the following hypotheses need to be tested:  

       
1

0 1
against: 0 : 0; {1, 2, , 2 }, (4)

k

j j j j j j
H H j   

    
      

where   and
j j

 
 

are the population parameters corresponding to and
j j

c c
 

respectively, for each .j  

Needless to say that: 

                                                              
0

: (5).
j j j

H   
 
   

where   is the grand population mean.  

     Above tests trigger the following program:  

(i)      Choosing a level of significance, , for the tests. 

(ii)     Estimating the population variance, 
2
.  

(iii)    Getting the standard errors for the estimates and 
j j

c c
 

 and hence for the 

differences    
j j

c c
 
  

 

Call these the standard errors of estimated effects and denote each of them by  
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SE(estimated effect j) ( ).
j j

SE c c
 

   

(iv)    Calculating the t-statistics 
/2; ,t


  where   associated df  for the estimates 

and subsequently comparing these with the critical t value. 

(v)     Making a decision on the 
0

' .
j

H s  

(vi)    Obtaining interval estimates for associating population statistics/parameters with respect 

to the significant ones (for which
0

'
j

H s  are false). 

How can be above program be achieved?  

     The answer to this question is reflected in the following steps/procedures: 

(i)     Obtain the grand sample average, 
G

y  and the main effect and interaction estimates. 

Choose a level of significance,  .   

                                                          
1 1

21

2
(6).

k

k
n

G r t

r tn
y y

 

    

(ii)       Estimating 
2
.  

Case (a) :  n = 1. 

Here, the measurements or observations are unreplicated (non-repeated). In this case, the 

sample does not yield an estimate of the experimental error against which the main and 

interaction effects can be evaluated. This problem can be resolved in one of at least three ways: 

a(i)  using the average of the sum of squares associated with interaction  effects of at least three 

factors as an estimate of 
2
.  Call this sum of squares int3 .SS   

a(ii)    using an independent estimate of the error variance, if available. 

a(iii)   replicating the experiment (2k design experiment) n times, where, 2.n   The use of 2n   

is quite common. 

     The choice of option a(i) provides a “near” ready-made estimate of variance due to 

experimental error, since the estimates of the main and interaction effects are already secured. 

The following reasoning paves the way for the desired estimate: 

                                               
   

22 2
Contrast 

(7), .
j jj j

j

N N N

c cc
SS

 


    

 

where N is the total number of observations. 2 ;
k

N   with this option contrast  j is the contrast 

for the factor or interaction located in column  j.   

     Number of third and higher order interactions: 

                                                             

 
 2

0 1 2

3

2

2

2

2 (8).

k

k

C CC

K K

K K K

N 

 


   

 

 

2 2

3

2  is divisible by 2  since, 2 ( 1) 2

and ( 1) is even, as well as 2; so is well defined
.

K K K K K K

K K N 

      



 
 
 

 

       These effects are located in columns  
 2

2

2

K K 
 through 2 1.

k
  

  Therefore: 
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2

1
2

int 3

2

2

1

( ) , (9).

( 2 1).

N

j

K K
j

k
N

SS ss




 






 


 

                                                                            
1

2 2
Effect

2 2

j j j

j k kj
N

c c c
c


    

(using 7), yielding  

                                             Effect
2

.j j

N
c   

                                        

2

2

2

2

2

1
(Effect

(Effect )
4

)( )

j

jj

N

N

N

ss 



 
 
 

 

and (9) becomes:  

                                         
2

1
2

int 3

2

2

(Effect ) (10)
4

.
N

j

k k
j

N
SS





 


   

 

The variance is now estimated by:  

 

                                                                2 int3

3

(11).
SS

N
s



  

The associated degrees of freedom,  

                                                 
3

.df N    

In summary, 

                                    2
average squared effect for three 

or  more factor interactions4
,

N
s

 
  

 
 

where: 

                                                             2 . (12)kN   

or: 

 

                                                     

2
average squared contrast for 1

three or more factor interactions
(13).

N
s

 
  

 
 

 

Number of squared effects  

                                                                  

 2

3

number of squared contrasts

2
(14).

2
2k

k k
df N 

 



    
 

(iii)     Getting 

                                                 
(estimate effect ) ( ), (15).

j j j
SE SE c c

 
     
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3.0   Methodology 

3.1   Orthogonal vectors and orthogonal matrices 

The distinct nontrivial column vectors  

                                                      1 2, , , ,
N

    

are said to be mutually orthogonal (pair-wise orthogonal) if : 

                                  0  {1, 2, , }, (16)for , ,
t

i j Ni j i j     

where  N  is any positive integer 2 and (.)t  denotes the transpose of  (.). 

Assume that each vector is r-dimensional (has r-rows). Then the following relation is 

immediate:  

                                                          
2 2 2

1 2
Diag , , , , (17).

t

m
D V V v v v   

where 

      
2 2

1 2

1

, , , , min{ , } and is the norm of ; ,
r

N j j j r j

i

V v v v m r N v v v v


     

the scalar (dot) product of v j  with itself or the sum of the squared components. D is an m by 

m diagonal matrix with the 
th

d  diagonal entry given by  

v d mj

2
1 2; { , , , }.   

 The vectors are orthornormal .
j

j

j

v
w

v


   
  

   
 

 

In other words, 

                

1

1; if 

0;

where:

.

or , ( , , )

t

j l

t

m N

j l

j l

W W W

w w

I w w













  

 

RESULTS 

 

Main Results 

Denote the 2k design and interaction matrix of signs by V. Then,   
2 1 1

2 , for each  {1, 2, , 2 } and is a 2 by 2  orthogonal matrix.
k k k k

j
v j V

 
   

     Consequently: 

                                                               
1

1
2 , (18)

t k

k
D V V I




   

1

2 1
where, is the identity matrix of order 2 .k

k
I




  

      If  V is extended to the column of row sums of the response matrix 

(in case of n replications of column of response; for a single replicate, n =1 ), then, V is a square 

matrix of order 2k with a vector of 1’s in the last column (response column signs being + all 

through). Therefore,  

                                                                2
2 (19).t k

kD V V I   

 

Set in (18),U V  so that 

                           1

1
2 .

t k

k
D U U I




   
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Theorem 

Let 
1 2 2 1
, , , kc c c


 be the contrasts of a 2k  replicated design with n replicates per cell in 

standard order. Let  
G

T  be the grand sample total.  

Let 
1 2 2 1
, , , kc c c


and 

G
y  be the corresponding estimated effects and the grand mean.   

Let Y  be the vector of the row sums of the response matrix. 

     Let M be the extended 2
k by 2

k  matrix of the columns of signs corresponding to the main 

factors, interactions, and the vector Y, (note that sgn Y  ( +, +, …, + )t ) with every occurrence 

of  “ + ” replaced by  “ 1 ”  and “ – ” replaced by  “ –1 ”. 

Let  ( ), and  ( )
j j

SE c SE c
 

 be the  standard errors of the estimates of the main and interaction 

effects at the higher and lower level settings respectively where: 

                                                                               

.
j j j

c c c
 

                                                            (20) 

       Let  dii be the ith diagonal element of the diagonal matrix, 

 
12

,
t

M M
n



 

where t denotes transposition. 

Set:  

                                                                                

2 .k
N n                                                            (21). 

Then: 

(i)               1 2 2 1
( , , , , ) .k

t

G

t
M YTc c c


                                                                                        (22) 

(ii)              
1

1 2 2 1

2
2( , , , , ) .

t t

k G

t
M M M Y

n
Yc c c




                                                                          (23).    

(iii)            
1

1 2

2
ki i

n N
d


                                                                                                                  (24). 

           uniformly in: 

                                            

{1, 2, , 2 }.
k

i                                                                                         (25). 

 

(iv)             

for {1, 2, , 2 1}. (26)( ) ( ) ,
k

j j i i
jSE c SE c s d

 
                        

                                                                 

2
  (estimated effect) ( ) , (27)(v) th

j j

s
SE j SE c c

N

 
                                                                                          

2
where:  is the estimated population variance.s  

  

Proof 

(i)      is the 2 by 2
k kt

M  matrix with the signs for the main and interaction effects in rows   

         1, 2, , 2 1
k
  

 in that order, and the sign  (1,1, …, 1) of the vector , in row 2 .
t k

Y  Therefore, the operation 
t

M Y  results  in each row or factor and interaction signs and the last row  
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vector (1, 1,  … ,1) being multiplied by total response vector Y, yielding the contrasts 

and  the grand total,  

            1 2 2 1k G

t

Tc c c


, as desired.  

(ii)       By (18), 

                                         1

2
and ( ) 2 ,

k

k

t

N

n

n
M V M M I I

N

 
                                                 (28). 

             so that 

                            
1

1 2

22 1

2
.k

t

Nk

n
N

M M I
n

I
n




                                                                           (29). 

Therefore:  

 
   

 

1

1 2 1 21 2 1 2 1

1 2 2 1

2 21
, , , , , , , ,

2

, , , , 2

k k

k

t t

t
t

G

Gk

G

M M M Y
n

T
c c c T c c c

n N

c c c Y



  



 



 
 
                  (30). 

  as required. 

 

 
1

1 1 1 1 12
, , ,

2 1
(iii) Diag Diag

2

1 1 1 1
,

2 2 2 2
k

t

k k k k k
M M I

n n n n n n



    
  

   
   
   

                      (31). 

        a diagonal matrix with value 
1

1

2kn 
 in each diagonal entry and 0 elsewhere. Therefore: 

 

                                                          
1

1
,

2
i i k

d
n


                                                                                 (32). 

         by the definition of di i .  

The following preparation is needed to accomplish (iv) and (v). 
t

M Y  is a matrix with the factors and interactions in rows 1 through 2 1
k
  and the transpose of 

the total response vector in row 2k .  Each of the rows 1 to 2 1k    has exactly 2 1k
 positive 

signs and 2 1k
negative signs.   

Let:    

1, if the level setting in column  is high
(33).

0, otherwise.

Similarly,

1, if the level setting in column  is low
(34).

0, otherwise.

j

j

j
X

j
X

















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Then the 2k  factorial design in standard order induces the following definition: 

         

1, if the level setting in row  is high and is

taken from column ; 1 ( 1)2 2  (35).

0, elsewhere.

Similarly,

1, if the level setting in row  is low and is

taken from column ; 1 ( 1)

k k

i j

i j

i

X j j i j

i

X j j





    



  







2 2  (36).

0, elsewhere.

k k
i j 







 

     Let and
j j

J J
 

 denote the columns corresponding to and
i j i j

X X
 

 respectively, each having 

exactly 2k – 1 nonzero entries and 2k – 1 zeros. 

Let andU U
   be the block diagonal matrices: 

                                     

1 2

1 2

2 1

2 1

Diag[ , , , ]

and

Diag[ , , , ] (37).

k

k

U J J J

U J J J

  

  













                                             

             

In particular, for 1, 2, ,j k , 
j

J

 is an alternating block of 2 j – 1  0’s and 2 j – 1 1’s with exactly 

2 k entries. 

 

Observe that for {1, 2, , 2 1},
k

j
j J


   is just column  j of the design and interaction matrix 

with + replaced by 1 and 0 elsewhere. Also, 
j

J
  is just column  j of the design and interaction 

matrix with  – replaced by – 1  and 0 elsewhere.  

 

   

   

1 1 1 1

2 1

1

2 1 copies

1 1

2 1

Diag

Hence,

[ 2 , 2 , , 2 ] 2 (38).

1
(39).

2

k

t t

t t

k

k

k k k k

k

U U U U

U U U U

I

I

   

   

   







 



  

    
   

 

 

 

 

1 1 2 2 2 1 2 1

1 2 1

1 2 1

Clearly, for  1, 2, , 2 1,

Augmented matrix block of block of 

[ , , , ]

Augmented matrix block of (  (40).

Singly replicated , with  row 2 an

k k

k

k

k

k

j

j

j

j U j U

J J J J J J

j U U

M

 

     

 

 

  

  

 

 

  

 



  

  

(41).d column 2 deleted.
k

 

For the n-fold replicated design in standard order, the following standard errors are immediate:  
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 

 

1

1

1

1

1 2
( ) diagonal element of . (42).

2

1 2
( ) diagonal element of . (43).

2

(iv)
t

th

j j jk

t
th

j j jk

SE c s j n U U s s d s
n N

SE c s j n U U s s d s
n N


  




  



   

   

 
 

 
 

 

(v)  Hence: 

                                             2 2

( estimated effect )

( ) ( ) ( )

4 2
. (44).

2

th

j j j j

k

SE j

SE c c SE c SE c

s
s

n N

   
   

 

 

A curious reader will have ploughed through the following facts: 

       Diag  
1

t

n U U


  
 

= Diag  
1

t

n U U


  
 

 

                                 =  Diag  
12 t

M M
n

 
  

                                                                                 (45) 

                                               with row 2k and column 2k  

deleted.                                                                                                                                          

                                                       

Each diagonal entry in the 2k –1  by 2k –1 matrix has the value: 

                                                                                
1

1 2 2
.

2 2
k k

n n N


                                  (46). 

Done! 

 

4.3   Corollary  

Let c c c k1 2 2 1
, , ,


 be the contrasts of a 2k  replicated design with n replicates per cell in 

standard order. Let  TG  be the grand sample total.  

Let c c c k1 2 2 1
, , ,


and yG  be the corresponding estimated effects and the grand mean.   

Let Y  be the vector of the row sums of the response matrix.           

     Let M be the extended 2k by 2k  matrix of the columns of signs corresponding to the main 

factors, interactions, and the vector Y, (note that  sgn Y  ( +, +, …, + )t ) with every occurrence 

of  “ + “ replaced by  “ 1 “  and “ – “ replaced by  “ –1 “. 

     Let  ( ), and  ( )j jSE SEc c 
 be the  standard errors of the estimates of the main and interaction 

effects at the higher and lower level settings respectively where: 

                                                c c cj j j   .                           (47) 

       Let  dii be the ith diagonal element of the diagonal matrix, 

                                    
12

,
t

M M
n



 

where t denotes transposition. 

     Set:  

                                                     2
k

N n                                                                    (48). 

Let U + and U – be defined as in the proof of theorem 3.1 

     Set 
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2 2

2  places

and Diag ( , ), where (1, 1, , 1)k k

k

t
V U U V V J J

 
     

Let R be the response matrix: 

       

11 12 1

21 22 2

2 ,1 2 ,2 2 ,k k k

n

n

n

y y y

y y y
R

y y y



 
 
 
 
  
 

 

1 2 2
1

2 places

Set for 1, 2, , 2 , so that ( , , , )

Set Diag ( , , , ) . 

k
j

k t

i

k

n

i
j

R y i Y R R R

Y Y Y Y



  




 

Then 

  

1 2 2 1
(i) ( , , , , ) .k

t t t

GV Y M Y c c c T


 

   
1 1

2

1 2 2 1

(ii)

.

2 2
2 , so that

( , , , , 2 )

k

k

t t k t t t

t

G

t
V V M M I V V V Y M M M Y

n n

c c c Y

 



  



 

1

1
(iii) ( )

1 2 2
where: is the diagonal element of , unifo rmly in

2

{1, 2, , 2 }.

tth

i i i ik

k

V Vd d i
n N n

i




 



 

  

.(iv) ( ) ( ) , for 1, 2, , 2 1
k

j j j j
SE c SE c s d j

 
                            

( .
2

v) (estimated effect)
th s

SE j
N

  

Proof 

1 2

1

1 1 22 2 1

2

(i)

.

 Set , for 1, 2, , 2 . Then Diag ( , , )

Diag ( , , ) Diag ( , , ) ( , , , , )

k

k k

k

k t t t

i i i

t

t t t

G

t

J

J

J J J i V Y J J Y

Y

J J Y Y c c c T

Y

 



   

  

 
 
 
 
 

 

  1 1 1 1 2 22 2 2 2

2 2
, as desired.

ii Diag ( , , ) Diag ( , , ) ( , , , )

2 2

k k k k

k k

t t t t t t

k k t

V Y J J J J J J J J J J

I I M M

 

  
 

1 1

12 2 2
.

2 2 1 2 1
(iii)  By (ii), ( ) ( )

2 2 2

t

k k kk k kV V I I I
n n n n

 


     

 
1

1 2 2
Hence, .

2 2
i i k k

d
n n N


    

 
12

(iv)  For 1, 2, , 2 , ( ) ( ) ,
k t

j j j
j SE c s d s U U

n


  

        

         noting that for a single response column 
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1

1

( )

where: is the diagonal element of ( )

1
Clearly, .

2

.

j j j

th t

j j

j j k

SE c s d

d j U U

d

 


  









    

For n replicates, 

         
1

1

1 1 2 2
( ) Diag ( )

2 2

t

j j k k
SE c s n U U s s s

n n N


  


        

                                     

1

2 2

1
( ) Diag ( )

4 2
( ) ( ( ) , as desired.

1 1 2

2

)

t

j

j

k

j j

jSE c s n U U

s
SE SE SE s

N N

s s
n N

c c c


  



 

 

   

   
 

Alternatively, 

              1 2
( ) Diag ( ) .t

j j

s
SE c s nV V

N


   

     Observe that for n replications of the standard order 2k design, the B matrix: t
B V V  is n-

fold replicated. Thus,  
~
B n B  is used in place of B, leading to  

                           
2

( ) Diag .
j j

s
SE c s B

N
   

 

 

IMPLICATION TO RESEARCH AND PRACTICE 

 

Remarks and notes: 

Diag (Mat)j  is the  jth diagonal block/element of the matrix Mat. 

2

2

is a 2 by 2 matrix

is a 2 by 1 matrix (a column vector).

, and are (2 1) 2 by 2 1 matrices.

is a 2 by 2 matrix.

k k

k

k k k

k k

Y

Y

U U V

V


 

 

                    

       

2

2

1 2 2

1 2 1 22 2

1 2 2

Diag ( , , , ) is a 2 by 2 matrix as are

Diag , , , and Diag , , , are 2 by 2  matrices

Diag , , , Diag , , is a 2 by 1 matrix (a column vector).

t k k

t tt t t t
k k

k

k

k k

k

t t

t t t

J J J

J J J J J J

J J J Y Y

       
   

  

 

     The reader who could take the time to verify the multiplication conformability of the various 

expressions in theorem 3.1 and corollary 3.2 would appreciate the corollary better. 

 

CONCLUSION 

 

The author has developed a technique for n2k factorial designs by leveraging on existing body 

of knowledge on 2k factorial designs and using orthogonality concepts and appropriate decision 

variables; these culminated into formulations and proofs of more compact and efficient 
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computational results on n2k complete experiments that would be of immense benefit to 

students and researchers. 

 

FUTURE RESEARCH 
 

The results in this article will be extended to 3kn factorial designs. 
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