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ABSTRACT: Mixtures of measures or distributions occur frequently in the theory and 

applications of probability and statistics. In the simplest case it may, for example, be reasonable 

to assume that one is dealing with the mixture in given proportions of a finite number of normal 

populations with different means or variances. The mixture parameter may also be 

denumerable infinite, as in the theory of sums of a random number of random variables, or 

continuous, as in the compound Poisson distribution. The use of finite mixture distributions, to 

control for unobserved heterogeneity, has become increasingly popular among those estimating 

dynamic discrete choice models. One of the barriers to using mixture models is that parameters 

that could previously be estimated in stages must now be estimated jointly: using mixture 

distributions destroys any additive reparability of the log likelihood function. In this thesis, the 

maximum likelihood estimators have been obtained for the parameters of the mixture of 

exponentiated Weibull distribution when sample is available from censoring scheme.The 

maximum likelihood estimators of the parameters and the asymptotic variance covariance 

matrix have been obtained. A numerical illustration for these new results is given.  

 

KEYWORDS: Mixture distribution, Exponentiated Weibull Distributiom (EW),  Mixture of 

two Exponentiated Weibull Distribution(MTEW), Maximum Likelihood Estimation, Moment 
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INTRODUCTION 

 

In probability and statistics, a mixture distribution is the probability distribution of a random 

variable whose values can be interpreted as being derived in a simple way from an underlying 

set of other random variables. In particular, the final outcome value is selected at random from 

among the underlying values, with a certain probability of selection being associated with each. 

Here the underlying random variables may be random vectors, each having the same dimension, 

in which case the mixture distribution is a multivariate distribution. 

  

In Many applications, the available data can be considered as data coming from a mixture 

population of two or more distributions. This idea enables us to mix statistical distributions to 

get a new distribution carrying the properties of its components. In cases where each of the 

underlying random variables are continuous, the outcome variable will also be continuous and 

its probability density function is sometimes referred to as a mixture density. The c.d.f. of a 

mixture is convex combination of the c.d.f’s of its components. Similarly, the p.d.f. of the 

mixture can also express as a convex combination of the p.d.f’s of its components. The number 

of components in mixture distribution is often restricted to being finite, although in some cases 
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the components may be countable. More general cases (i.e., an uncountable set of component 

distributions), as well as the countable case, are treated under the title of compound distributions 

  

A mixture is a weighted average of probability distribution with positive weights that add up to 

one. The distributions thus mixed are called the components of the mixture. The weights 

themselves comprise a probability distribution called the mixing distribution. Because of these 

weights, a mixture is in particular again a probability distribution. Probability distributions of 

this type arise when observed phenomena can be the consequence of two or more related, but 

usually unobserved phenomena, each of which leads to a different probability distribution. 

Mixtures and related structures often arise in the construction of probabilistic models. Pearson 

(1894) was the first researcher in the field of mixture distributions who considered the mixture 

of two normal distributions. After the study of Pearson (1894) there was long gap in the field 

of mixture distributions. Decay  (1964) has improved the results of Pearson (1894), Hasselblad 

(1968) studied in greater detail about the finite mixture of distributions. 

  

Life testing is an important method for evaluating component’s reliability by assuming a 

suitable lifetime distribution. Once the test is carried out by subjecting a sample of items of 

interest to stresses and environmental conditions that typify the intended operating conditions, 

the lifetimes of the failed items are recorded. Due to time and cost constraints, often the test is 

stopped at a predetermined time (Type I censoring) or at a predetermined number of failures 

(Type II censoring). 

 

If each item in the tested sample has the same chance of being selected, then the equal 

probability sampling scheme is appropriate, and this has lead theoretically to the use of standard 

distributions to fit the obtained data. If the proper sampling frame is absent and items are 

sampled according to certain measurements such as their length, size, age or any other 

characteristic (for example, observing in a given sample of lifetimes that large values are more 

likely to be observed than small ones). In such a case the standard distributions cannot be used 

due to the presence of certain bias (toward large value in our example), and must be corrected 

using weighted distributions. 

  

In lifetesting reliability and quality control problems, mixed failure populations are sometimes 

encountered. Mixture distributions comprise a finite or infinite number of components, possibly 

of different distributional types, that can describe different features of data. Some of the most 

important references that discussed different types of mixtures of distributions are Jaheen 

(2005) and AL-Hussaini and Hussien (2012). 

 

Mixture of distributions can be treated from two points of view. The first one is that the 

experimenter knows in advance the population of origin of each tested item before placed on 

test or after the test has been terminated by failure analysis. This kind of data can be named 

classified data or post-mortem data (in the case of post failure analysis). This idea was adopted 

by Mendenhall and Hader (1958) who derived the likelihood function adequate for this situation 

in the case of two –component mixture under type I censored data and generalized it to the case 

of k – components ( k >2). 

 

Finite mixture models have been used for more years, but have seen a real boost in popularity 

over the last decade due to the tremendous increase in available computing power. The areas of 

application of mixture models range from biology and medicine to physics, economics and 

marketing. On the one hand these models can be applied to data where observations originate 
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from various groups and the group affiliations are not known, and on the other hand to provide 

approximations for multi-modal distributions [see Everitt and Hand (1981); Titterington et al. 

(1985); Maclachlan and Peel (2000), Shawky and Bakoban (2009) and Hanna Abu-Zinadah 

(2010)].We shall consider the exponentiated Weibull model, which includes as special case the 

Weibull and exponential models. The Exponentiated Weibull family EW [introduced by 

Mudholkar and Srivastava (1993) as extention of the Weibull family] Contains distributions 

with bathtub shaped and unimodal failure rates besides a broader class of monoton failure rates. 

Applications of the exponentiated models have been carried out by some authors as Bain 

(1974); Gore et al. (1986); and Mudholkar and Hutson (1996). 

 

Some statistical properties of this distribution (EW) are discussed by Singh et al. (2002).  

Ashour and Afifiy (2008) derived maximum likelihood estimators of the parameters for EW 

with type II progressive interval censoring with random removals and their asymptotic 

variances. 

 

The aim of this research is to introduce a study of a mixture of two Exponentiated Weibull 

distribution, study of the behavior of the failure rate function of this mixture and handle the 

problems of estimation. 

 

Research Outline 
1. Derivation of statistical properties of the model. 

2. Obtain maximum likelihood estimators of the parameters, reliability and hazard functions  

    from type II censored samples.. 

3. Monte Carlo simulation study will be done to compare between these estimators and the 

     maximum likelihood. 

 

 Additional to this introductory chapter, this thesis contains four chapters:  

In chapter (2) some properties of the mixture of two exponentiated Weibull distribution will 

be studying .Chapter (3) is concerned with the estimation of the Mixture of the exponentiated 

Weibull distribution parameters has been drived via maximum likelihood estimation method. 

Chapter(4) a nenumerical data will be illustrated using real data and Simulation technique has 

been used to study the behaviour of the estimators using the Mathcad (2011) packages.  

 

THE MIXTURE OF TWO EXPONENTIATED WEIBULL DISTRIBUTION 

 

In this chapter, we consider the mixture of two – component Exponentiated Weibull (MTEW) 

distribution. Some properties of the model with some grahps of the density and hazard functions 

are discussed. The maximum likelihood estimation is used for estimating the parameters, 

reliability, and hazard functions of the model under type II censored samples. 

 

Mixture Models 

Mixtures of life distributions occur when two different causes of failure are present, each with 

the same parametric form of life distributions. In recent years, the finite mixtures of life 

distributions have proved to be of considerable interest both in terms of their methodological 

development and practical applications [see Titterington et al. (1985), Mclachlan and Basford 

(1988), Lindsay (1995), Mclachlan and Peel (2000) and Demidenko (2004)]. 

 

Mixture model is a model in which independent variables are fractions of a total. One of the 

types of mixture of the distribution functions which has its practical uses in a variety of 
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disciplines. Finite mixture distributions go back to end of the last century when Everitt and 

Hand (1981) published a paper on estimating the five parameters in a mixture of two normal 

distributions. Finite mixtures involve a finite number of components. It results from the fact 

that different causes of failure of a system could lead to different failure distributions, this 

means that the population under study is non-homogenous. 

Suppose that T is a continuous random variable having a probability density function of 

the form: 

                                    
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1. The corresponding c.d.f. is given by: 
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where k is the number of components, the parameters 𝑝1, 𝑝2, … , 𝑝𝑘 are called mixing 

parameters, where 𝑝𝑖 represent the probability that a given observation comes from population 

"i" with density  𝑓𝑖(. ), and  𝑓1(. ), 𝑓2(. ),…, 𝑓𝑘(. )   are the component densities of the mixture. 

When the number of components k=2, a two component mixture and can be written as: 

                                   ),()1()()( 21 tfptfptf   

When the mixing proportion 'p' is closed to zero, the two component mixture is said to be not 

well separated. 

Definition (1):Suppose that T and Y be two random variables. Let 𝐹(𝑡|𝑦) be the distribution 

function of T given Y and G(y) be the distribution function of Y. The marginal distribution 

function 𝐹(𝑡), defined by: 

                                 

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is called a mixture of the distribution function 𝐹(𝑡|𝑦) and 𝐺(𝑦) where 𝐹(𝑡|𝑦) is known as the 

kernel of the integral and 𝐺(𝑦) as the mixing distribution . 

A special case from definition (1) when the random variable Y is a discrete number of points 

{𝑦𝑗 , 𝑗 = 1, 2, 3, … , 𝑘}  and G is discrete and assigns positive probabilities to only those values 

of Y; the integral (2.16) can be replaced by a sum to give a countable mixture: 
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where )( jyg  is the probability of jy  . If the random variable Y assumes only a finite number 

of distributions {𝑦𝑗 , 𝑗 = 1, 2, 3, … , 𝑘} ,  Ahmed et al. (2013) have been used the finite mixture: 
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By differentiating (4) with respect to T, the finite mixture of probability density functions can 

be obtained as follows 

                                                           
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    where 

𝑓𝑗(𝑡) =
𝑑𝐹𝑗(𝑡)

𝑑𝑡
=

𝑑𝐹(𝑡|𝑦𝑗)

𝑑𝑡
= 𝑓(𝑡|𝑦𝑗),      

In (5), the masses  𝑤𝑗 called the mixing proportions, they satisfy the conditions: 
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𝐹𝑗(. ) 𝑎𝑛𝑑 𝑓𝑗(. )  are called the 𝑗𝑡ℎ component in the finite mixture of distributions (4) and 

probability density functions (5), respectively. Thus, the mixture of the distribution functions 

can be defined as a distribution function that is a linear combination of other distribution 

functions where all coefficients are non-negative and add up to 1. 

The parameters in number of expressions (4) or (5) can be divided into three types. The first 

consists solely of k, the components of the finite mixture. The second consists of the mi- xing 

proportions w . The third consists of the component parameters (the parameters of  𝐹𝑗 (. ) or 

 𝑓𝑗(. )).  

 

Reliability of finite mixture of distributions 

An important topic in the field of lifetime data analysis is to select and specify the most 

appropriate life distribution that describes the times to failure of a component, subassembly, 

assembly or system. This requires the collection and analysis of the failure data obtained by 

measurements or simulations in order to fit the model empirically to the observed failure 

process.   

 

There are two general approaches to fitting reliability distributions to failure data. The first 

approach is to derive an empirical reliability function directly from data, since no parameters 

exist. The second and usually preferred approach is to identify an appropriate parametric 

distribution, such as exponential, Weibull, normal, lognormal or gamma, and to estimate the 

unknown parameters. There are several reasons to prefer the later approach, for instance, 

binning the data does not provide information beyond the range of the sample data, whereas 

with a parametric distribution this is possible. Continuous reliability distribution can be applied 

also in performing more complex analysis of the failure process, [see Ebeling (1997)]. 

 

The two and three-parameter Weibull distribution are one of the most commonly used 

distributions in reliability engineering because of the many shapes they attain for various values 

of shape and scale parameters. It can therefore model a great variety of data and life 

characteristics. Since the shape of the life distribution is often composed of more than one basic 

shape, a natural alternative is to introduce the mixture distribution as the genuine distribution 

for times to failure modeling. A significant difficulty common to all mixed distributions is the 

estimation of unknown parameters. 

 

There is anumber of papers dealing with 2-fold mixture models for times to failure modeling. 

For example, Jiang and Murthy (1995) characterized the 2-fold Weibull mixture models in 

terms of the Weibull probability plotting, and examined the graphical plotting approach to 

determine if a given data set can be modeled by such models. Ling and pan (1998) proposed 

the method to estimate the parameters for the sum of two three- parameter Weibull distributions. 

Based on these findings, a new procedure for the selection of population distribution and 

parameter estimation was presented. 

The reliability of the mixture distributions is given by: 

                             
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Exponentiated Weibull Distribution (EW) 
 

Salem and Abo-Kasem (2011) drived EW distribution in the following details; the 

“Exponentiated Weibull family” introduced by Mudholkar and Srivastava (1993) as extension 

of the Weibull family, contains distribution with bathtub shabed and unimodale failure rates 

besides a broader class of monotone failure rates. The applications of the exponentiated Weibull 

(EW) distribution in reliability and survival studies were illustrated by Mudholkar et al. (1995). 

Its’ properties have been studied in more detail by Mudholkar and Hutson (1996) and Nassar 

and Eissa (2003). The probability density function (p.d.f.), the cumulative distribution function 

(c.d.f.) and the reliability function of the exponentiated Weibull are given respectively by;   

         ,0,,,)1()( 11    

tteetf tt                                                      (7) 

                                     ,]1[),,( 
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and 

                                    ,0],)1(1[)(   tetR t 

                                           (9) 

Where α and θ are the shape parameters of the model (7). The distinguished feature of  

EW distribution from other life time distribution is that it accommodates nearly all types of 

failure rates both monotone and non-monotone (unimodal and bathtub). The EW distribution   

includes a number of distributions as particular cases: if the shape parameter θ = 1, then the 

p.d.f. is that Weibull distribution, when α = 1 then the p.d.f is that Exponentiated Exponential 

distribution, if  α = 1 and θ = 1 then the pdf is that Exponential distribution and if α = 2 then the 

p.d.f is that one parameters Burr-X distribution. Mudholkar and Hutson (1996) showed that the 

density function of the EW distribution is decreasing when αθ ≤ 1 and unimodal when αθ ≥ 1.  

 

Statistical Properties of EW distribution 

The statistical properties are very important to identify the distributions. Once a life time 

distribution representation for a particular item is known, it may be of interest to compute a 

moment or fractile of the distribution. Although moments and fractiles contain less information 

than a life time distribution representation, they are often useful ways to summarize the 

distribution of a random life time. Mudholkar and Hutson (1996) discussed som statistical 

measure for the EW distribution in the following detailes. 

Moments: the rth central moment )( r

r tE  of the EW distributin with density given by 

equation (7) is given by: 

                            ,)1()(
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In general the moments are analytically intractable, but can be studied numerically. Also an 

examination of (10) shows that for α > 0 the moments of all orders exist but it is not always so 

when the family is extended to α < 0. 

Skewness and Kurtosis: The coefficient of skewness 3v  the coefficient fo kurtosis 4v  can be 

used to understand the nature of the exponentiated Weibulle distribution.  

Quantile function: The exponentiated Weibull family introduced by Mudholkar and Srivastava 

(1993) is defined by the quantil function 

               ,0,,)]1ln([)(
11

 UUQ                                                                    (11) 

At ,1  (11) corresponds to the Weibull family which includes the exponential distribution 

the exponentiated Weibull may be extended to negative values, continuously at ,0  by 
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modifying )(UQ  at (11) to   /])([ UQ . This extended family includes the reciprocal 

Weibull family, and at 0  consists of the extreme value distributions. 

 

Currently, there are little studies for the use of the EW in reliability estimation. Ashour and 

Afify (2007) considered the analysis of EW family distributed lifetime data observed under 

type I progressive interval censoring with random removals, maximum likelihood estimators of 

the parameters and their asymptotic variances are derived. Ashour and Afify (2008) derived 

maximum likelihood estimators for the parameters of EW with type II progressive interval 

censoring with random removals and their asymptotic variances. Kim et al. (2009) derived the 

maximum likelihood and Bayes estimators for EW lifetime model using symmetric and 

asymmetric loss functions [see Salem and Abo-Kasem (2011)].  

 

Statistical properties  for The Mixture of Exponentiated Weibull  Distribution. 

The failure of an item or a system can be caused by one or more than one cause of failure; it 

results that the density of time to failure can have one mode or multimodal shape and in that 

case, finite mixtures represent a good tool to model such phenomena. Suppose that two 

populations of the exponentiated Weibull (EW) distribution with two shapes parameters α and 

θ [see Mudholkar and Hutson (1996)] mixed in unknown proportions p and (1-p) respectively.   

 

A random variable T is said to follow a finite mixture distribution with k components, if the 

p.d.f. of T can be written in the form (1) [see Titterington et al. (1985)]. Where 𝑗 = 1,… , 𝑘, fj(t) 

the jth p.d.f. component (7) and the mixing proportions ,pj , satisfy the conditions 10  jp   

and 

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k

j

jp
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,1  the corresponding c.d.f., is given by (2), where Fj(t) is the jth c.d.f., component 

(8) , the reliability function (RF) of the mixture is given by (6), where Rj(t) is the jth reliability 

component (9) . The hazard function (HF) of the mixture is given by 
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where )(tf  and )(tR are defined in (1) and (6) respectively.     

Mixture of K EW components: Substituting (7) and (8) in (1) and (2), the p.d.f. and c.d.f. of 

MTEW components are given respectively, by: 
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                                Fig (1) Shapes of MTEW distribution with (𝑃, 𝛼1, 𝜃1, 𝛼2, 𝜃2) 
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Figure (1) shows some densities of MTEW distribution. 

        0,,0,)1()(
1






jj

k

j

t

j teptF j
j




                                                               (13) 

where, for kj ,...,1 , 10  jp  and 
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                                               Fig (2) Shapes of (MTEW) distribution c.d.f. 

 Figure (2) shows some cumulative distribution functions of MTEW distribution. 

By observing that R(t) = 1- F(t) and 
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1, the RF of MTEW distribution , 𝑗 = 1 , 2 , … , 𝑘 

components can be obtained from (6) and (9) as :  
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                                                      Fig (3) Shapes of (MTEW) distribution RF 

Figure (3) shows some reliability functions (RF) of MTEW distributions. 

dividing (12) by (14), we obtain the HF of MTEW distribution as:  
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                                                            Fig (4) (MTEW) distributions HF 

Figure (4) shows some reliability functions (HF) of MTEW distribution. 

If k = 2, the p.d.f., c.d.f. RF and HF of MTEW distribution are then given, respectively by 

𝑓(𝑡) = 𝑝 𝛼1𝜃1𝑡
𝛼1−1𝑒−𝑡𝛼1(1 − 𝑒−𝑡𝛼1)𝜃1−1 + (1 − 𝑝)𝛼2𝜃2𝑡

𝛼2−1𝑒−𝑡𝛼2(1 − 𝑒−𝑡𝛼2)𝜃2−1,  

𝐹(𝑡) = 𝑝(1 − 𝑒−𝑡𝛼1)𝜃1 + (1 − 𝑝) (1 − 𝑒−𝑡𝛼2)𝜃2  ,   

𝑅(𝑡) = 𝑝(1 − (1 − 𝑒−𝑡𝛼1)𝜃1) + (1 − 𝑝) (1 − (1 − 𝑒−𝑡𝛼2)𝜃2),                                                          
and 

,
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)(
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tR

tf
tH   

- Moments and some measures: The rth moment about the origin, 𝜇𝑟
\
= 𝐸(𝑇𝑟) of MTEW 

distribution, with p.d.f (12) in the non – closed form is:  

𝜇𝑟
\
= ∑𝑝𝑗𝛼𝑗𝜃𝑗 ∫ 𝑡𝛼𝑗+𝑟−1

∞

0

𝑒−𝑡
𝛼𝑗

(1 − 𝑒−𝑡
𝛼𝑗

)𝜃𝑗−1 𝑑𝑡 , 𝑟 = 1,2, …                                            

𝐾

𝑗=1

 

which is a non-closed form. To evaluate 𝜇𝑟
\
 using this form, we resort to numerical integration 

for all positive values of 𝛼𝑗 and 𝜃𝑗. For positive integer values of  𝜃𝑗 , 𝜇𝑟
\
  takes the form 
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       = ∑ ∑ 𝑃𝑗𝜃𝑗(−1)𝑗1 (
𝜃𝑗 − 1

𝑗1
)

𝜃𝑗−1

𝑗1=1

𝐾

𝑗=1

Γ(
𝑟

𝛼𝑗
+ 1)

(𝑗1 + 1)
𝑟

𝛼𝑗
+1

 

      



k

j

jr

j

jj A
r

p
1

)],()1([ 


                                                                                       

where  

 𝐴𝑟(𝜃𝑗) = ∑ (−1)𝑗1

𝜃𝑗−1

𝑗1=1

(
𝜃𝑗 − 1

𝑗1
)

1

(𝑗1 + 1)
𝑟

𝛼𝑗
+1

 ,                                                            

0 10 20
0

0.1

0.2

0.3

0.4

H t 0.3 3 0.5 3 0.6( )

H t 0.3 3 0.5 3 0.3( )

H t 0.3 3 0.5 2 0.4( )

H t 0.3 3 0.3 3 0.5( )

t
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when  k=2, the rth moment about the origin , 𝜇𝑟
\
= 𝐸(𝑇𝑟) of MTEW distribution with p.d.f (12) 

is given by  

𝜇𝑟
\
= 𝑃 𝜃1 [Γ (

𝑟

𝛼1
+ 1) 𝐴𝑟(𝜃1)] + (1 − 𝑃)𝜃2 [Γ (

𝑟

𝛼2
+ 1) 𝐴𝑟(𝜃2)]                                           (16) 

              The closed form (16) of 𝜇𝑟
\
 allows us to derive the following forms of statistical 

measures for MTEW distribution: 

1. Coefficient of variation: 
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2. Skewness:                                                                                                                                                   
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and abbreviation 
rA  is for ,...2,1),( rA jr  ,  

The result developed (16) can be derived from the moment generating function (m.g.f) of 

MTEW distribution as follows 

,0,)1()(
1 0

11
 






ydteeetpy
k

j

tytt

jjjt
j

jj
j  

                                                                       (17) 

when 11 p , (17) gives the (m.g.f) of  MTEW distribution (12). 

Median and Mode: If T is continuous, then tp is a solution to the equation  

                                         ,)( ptF p   

The median of T is the 50th percentile, denote by  tmmt ,,5.0 . Half of the population values are 

above the median, and half are below it, so it is sometimes used instead of the mean as acentral 

measure [see Ahmed et al (2013)]. From equation (13), the median m is defined as the numerical 

solution of the fillow equation 

                               ,10,0,,0,5.0)1(
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Next, to find the mode for MTEW distribution, we differentiate )(tf with respect to t so (12) 

gives.         
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Then by equating )(\ tf  with zero. Since )(tf  is always positive for ,0t  then we have  
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ARAMETERS MAXIMUM LIKELIHOOD ESTIMATION FOR THE UNKNOWN P 

of MTEW under Type II Censored Sample 

Suppose a type-II censored sample  ),...,,( ;;2;1 nrnn tttt   where it the time of the ith component 

to fail. This sample of failure times are obtained and recorded from a life test of n items 

whose life time have  MTEW distribution, with p.d.f, and c.d.f given, respectively, by (12) 

and (13). The likelihood function in this case [see lawless (1982)] can be written as 

,)](1)[(
)!(

!
)|( )(

1

rn

i

r

i

Ftf
rn

n
tL 






                                                                          (18) 

 where  f (.) and F (.) are the density and distribution functions, respectively.  

when T ,then (18) reduces to the likelihood function of type-I censored, and when وt r )(  

then (18) reduces to the likelihood function of type–II censored. Type-I and type–II censoring 

corresponding to complete sampling when rn  . 

where )( ;nitf and )( ;nitR are given, respectively, by (12) and (14). 
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     Assuming that the parameters, 𝜃1 and 𝜃2 are unknown, we differentiate the natural 

logarithm of the likelihood function  

),(ln)()(ln
!)(

!
ln)(ln :;

1
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tRrntf
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n
Ll 





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
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

   

with respect to 𝜃𝑗   so the likelihood equations are given by  

𝑙𝑗 =
𝜕𝑙

𝜕𝜃𝑗
= ∑[

1

𝑓(𝑡𝑖:𝑛)
 .
𝜕𝑓(𝑡𝑖:𝑛)

𝜕𝜃𝑗
] +

𝑛 − 𝑟

𝑅(𝑡𝑟:𝑛)
 .
𝜕𝑅(𝑡𝑟:𝑛)

𝜕𝜃𝑗
,     𝑗 = 1,2,                                        (19)

𝑟

𝑖=1

 

where  𝑙𝑗 is the first derivatives of the natural logarithm of the likelihood function with respect 

to 𝜃𝑗 , from (12) and (14) respectively .we have:  

𝜕𝑓(𝑡𝑖:𝑛)

𝜕𝜃𝑗
= 𝑝𝑗𝑓𝑗(𝑡𝑖:𝑛)k𝑗

∗(𝑡𝑖:𝑛) ,                                                                                                      (20) 

and  
𝜕𝑅(𝑡𝑟:𝑛)

𝜕𝜃𝑗
= −𝑝𝑗𝐹𝑗(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛),                                                                                                  (21) 

where p1 = p , p2 = 1 – p ,  

 𝑘𝑗
∗(𝑡𝑖:𝑛) = 𝜃𝑗

−1 + 𝜔∗(𝑡𝑖:𝑛) ,                                                                                                                        (22) 

and  

 𝜔∗(𝑡𝑖:𝑛) = ln (1 − 𝑒−𝑡𝑖:𝑛
𝛼𝑗

) ,                                                                                                                      (23) 

 Substituting (20) and (21) in (19), we obtain  

𝑙𝑗 = 𝑝𝑗 {∑ 
𝑗
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𝑟
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𝑗

∗∗∗
(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛)} = 0,                                 (24) 

where  𝑙𝑗 is the first derivatives of the natural logarithm of the likelihood function with respect 

to 𝜃𝑗  for j = 1,2, and i = 1,2, ..., r 


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 ,                                                                                             (25)  

and  𝑘𝑗
∗(𝑡𝑖:𝑛) , 𝜔∗(𝑡𝑖:𝑛)  are given by (22) and (23) respectively. Assuming that the 

parameters, 𝛼1 and 𝛼2 are unknown, we differentiate the natural logarithm of the likelihood 

function with respect to 𝛼𝑗  so the likelihood equations are given by: 
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where 
j

l




 is the first derivatives of the natural logarithm of the likelihood function with 

respect to 𝛼𝑗, from (12) and (14) respectively, we have  

 
𝜕𝑓(𝑡𝑖:𝑛)

𝜕𝛼𝑗
= 𝑝𝑗𝑓𝑗(𝑡𝑖:𝑛)𝑆𝑗(𝑡𝑖:𝑛),                                                                                                               (27)            

and  

  
𝜕𝑅(𝑡𝑟:𝑛)

𝜕𝛼𝑗
= −𝑝𝑗𝐹𝑗(𝑡𝑟:𝑛)𝑂𝑗(𝑡𝑟:𝑛),                                                                                                     (28) 

where  p1 = p , p2 = 1 – p , 

        𝑆𝑗(𝑡𝑖:𝑛) = 𝛼𝑗
−1 + ln(𝑡𝑖:𝑛) − 𝑡

𝑖:𝑛

𝛼𝑗 ln(𝑡𝑖:𝑛) + (𝜃𝑗 − 1)(1 − 𝑒−𝑡
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)−1 
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× 𝑒
−𝑡(𝑖:𝑛)

𝛼𝑗

𝑡(𝑖:𝑛)

𝛼𝑗 ln(𝑡𝑖:𝑛),                                                                                                                         (29) 

and 

      𝑂𝑗(𝑡𝑟:𝑛) =  𝜃𝑗𝑡(𝑟:𝑛)

𝛼𝑗 𝑒
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(1
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)−1ln(𝑡𝑟:𝑛),                                                                                                 (30) 
Substituting (4.1.15) and (4.1.16) in (4.1.14), we obtain  
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(𝑡𝑟:𝑛)𝑂𝑗(𝑡𝑟:𝑛)} = 0,                                (31) 

where 
j

l




 is the first derivatives of the natural logarithm of the likelihood function with 

respect to 𝛼𝑗 for  j = 1,2,   and i = 1,2,…, r, 


𝑗
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(𝑡𝑖:𝑛) , 

𝑗

∗∗∗
(𝑡𝑟:𝑛), 𝑆𝑗(𝑡𝑖:𝑛)  and 𝑂𝑗(𝑡𝑟:𝑛) are given respectively by (25), (29) and (30). 

The solution of the four nonlinear likelihood equations (24) and (31) yields the 

maximum likelihood estimate (MLE): 

𝜃 = (𝜃1,𝑀 , 𝜃2,𝑀 , 𝛼̂1,𝑀 , 𝛼̂2,𝑀) 𝑜𝑓 𝜃 = (𝜃1 , 𝜃2 , 𝛼1 , 𝛼2), 

The MLE's of R(t) and H(t) are given, respectively, by (14) and (15) after replacing 

(𝜃1 , 𝜃2 , 𝛼1 , 𝛼2) by their corresponding MLE's, 𝜃1,𝑀 , 𝜃2,𝑀 , 𝛼̂1,𝑀 𝑎𝑛𝑑  𝛼̂2,𝑀  .  

            Since the equations (24) and (31) are clearly transcendental equations in 𝜃𝑗  and 𝛼̂𝑗 ; that 

is, no closed form solutions are known they must be solved by iterative numerical techniques 

to provide solutions (estimators), 𝜃𝑗  and 𝛼̂𝑗 , in the desired degree of accuracy. To study the 

variation of the MLE's 𝜃𝑗  and 𝛼̂𝑗 , the asymptotic variance of these estimators are obtained. 

          The asymptotic variance covariance matrix of 𝜃𝑗  and 𝛼̂𝑗  is obtained by inverting the 

information matrix with elements that are negative expected values of the second order 

derivatives of natural logarithm of the likelihood function, for sufficiently large samples, a 

reasonable approximation to the asymptotic variance covariance matrix of the estimators can 

be obtained as; 

[
 
 
 
 
 
 
 
 
 −

𝜕2𝑙(𝜃)

𝜕𝜃1
2 −

𝜕2𝑙(𝜃)

𝜕𝜃1𝜕𝜃2
−

𝜕2𝑙(𝜃)

𝜕𝜃1𝜕𝛼1
−

𝜕2𝑙(𝜃)

𝜕𝜃1𝜕𝛼2

−
𝜕2𝑙(𝜃)

𝜕𝜃2𝜕𝜃1
−

𝜕2𝑙(𝜃)

𝜕𝜃2
2 −

𝜕2𝑙(𝜃)

𝜕𝜃2𝜕𝛼1
−

𝜕2𝑙(𝜃)

𝜕𝜃2𝜕𝛼2

−
𝜕2𝑙(𝜃)

𝜕𝛼1𝜕𝜃1
−

𝜕2𝑙(𝜃)

𝜕𝛼1𝜕𝜃2
−

𝜕2𝑙(𝜃)

𝜕𝛼1
2 −

𝜕2𝑙(𝜃)

𝜕𝛼1𝜕𝜃2

−
𝜕2𝑙(𝜃)

𝜕𝛼2𝜕𝜃1
−

𝜕2𝑙(𝜃)

𝜕𝛼2𝜕𝜃2
−

𝜕2𝑙(𝜃)

𝜕𝛼2𝜕𝜃1
−

𝜕2𝑙(𝜃)

𝜕𝛼2
2 ]

 
 
 
 
 
 
 
 
 
−1

|

|

|

𝜃̂𝑗,𝛼̂𝑗

 

                               ≅

[
 
 
 
 

v(𝜃1)

𝑐𝑜v(𝜃1, 𝜃2)

𝑐𝑜v(𝛼̂1, 𝜃1)

𝑐𝑜v(𝛼̂2, 𝜃1)

𝑐𝑜v(𝜃1, 𝜃2)

v(𝜃2)

𝑐𝑜v(𝛼̂1, 𝜃2)

𝑐𝑜v(𝛼̂2, 𝜃2)

𝑐𝑜v(𝜃1, 𝛼̂1)

𝑐𝑜v(𝜃2, 𝛼̂1)

v(𝛼̂1)

𝑐𝑜v(𝛼̂2, 𝛼̂1)

𝑐𝑜v(𝜃1, 𝛼̂2)

𝑐𝑜v(𝜃2, 𝛼̂2)

𝑐𝑜v(𝛼̂1, 𝛼̂2)

v(𝛼̂2) ]
 
 
 
 

                  (32) 

The appropriate (32) is used to derive the 100 (1- 𝛾) % confidence intervals of the parameters 

as in following forms : 
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𝜃𝑗 ± 𝑍𝛾

2

√𝑉(𝜃𝑗)  , 𝛼̂𝑗 ± 𝑍𝛾

2

√𝑉(𝛼̂𝑗) , 𝑓𝑜𝑟 𝑗 = 1,2 

where, 𝑍𝛾

2
 is the upper  

𝛾

2
  percentile of the standard normal distribution. 

The asymptotic variance – covariance matrix will be obtained by inverting the 

information matrix with the elements that are negative of the observed values of the second 

order derivate of the logarithm of the likelihood functions .using the logarithm of the likelihood 

functions ,the elements of the information matrix are given by: 

𝑙12 = 𝑙21 =
𝜕𝑙1
𝜕𝜃2

=
𝜕𝑙2
𝜕𝜃1

                                                                                                                    

              =  −𝑝𝑝2 {∑𝜑∗

𝑟

𝑖=1

(𝑡𝑖:𝑛) + (𝑛 − 𝑟)𝜔∗2(𝑡𝑟:𝑛)Ψ∗(𝑡𝑟:𝑛)},                                                  (33) 

where  𝑙1 is the first derivatives of the natural logarithm of the likelihood function  with respect 

to 𝜃1and 𝑙2 is the first derivatives of the natural logarithm of the likelihood function  with 

respect to 𝜃2. 

and for i = 1, 2, …, r  

where 

   𝜑∗(𝑡𝑖:𝑛) = 𝑘1
∗(𝑡𝑖:𝑛)𝑘2

∗(𝑡𝑖:𝑛)
1

∗∗
(𝑡𝑖:𝑛) 

2

∗∗
(𝑡𝑖:𝑛),                                                                        (34) 

  Ψ∗(𝑡𝑟:𝑛) = 
1

∗∗∗
(𝑡𝑟:𝑛)

2

∗∗∗
(𝑡𝑟:𝑛),                                                                                                 (35) 

𝑙𝑗𝑗 =
𝜕𝑙𝑗

𝜕𝜃𝑗
= −𝑝𝑗 {∑𝐴𝑗

∗

𝑟

𝑖=1

(𝑡𝑖:𝑛) + (𝑛 − 𝑟)𝜔∗(𝑡𝑟:𝑛)𝐵𝑗
∗(𝑡𝑟:𝑛)},                                                    (36) 

𝐴𝑗
∗(𝑡𝑖:𝑛) = 

𝑗

∗∗
(𝑡𝑖:𝑛)𝜃𝑗

−2 − 𝑝𝑠𝑘𝑗
∗2

(𝑡𝑖:𝑛)
𝑗

∗∗
(𝑡𝑖:𝑛)

𝑠

∗∗
(𝑡𝑖:𝑛),                                                         

and 

𝐵𝑗
∗(𝑡𝑟:𝑛) = 

𝑗

∗∗∗
(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛) + 𝑝𝑗

𝑗

∗∗∗2

(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛),                                                         

where  𝑙𝑗𝑗 is the second derivatives of the natural logarithm of the likelihood function with 

respect to 𝜃𝑗 , for 𝑗 = 1, 2 , 𝑠 = 1, 2, 𝑗 ≠ 𝑠 the functions 𝑘𝑗
∗(.) and 𝜔∗ (.) are given by (22) and 

(23), 
𝑗

∗∗
(.) and 

𝑗

∗∗∗
(.) by (25). 

𝜕2𝑙

𝜕𝛼1𝛼2
=

𝜕2𝑙

𝜕𝛼2𝛼1
                                                                                                                 

                            = −𝑝1𝑝2 {∑𝜑∗∗(𝑡𝑖:𝑛) + (𝑛 − 𝑟)Ψ∗∗(𝑡𝑟:𝑛)

𝑟

𝑖=1

} ,                                                  (37) 

where  

      𝜑∗∗(𝑡𝑖:𝑛) = 
1

∗∗
(𝑡𝑖:𝑛)

2

∗∗
(𝑡𝑖:𝑛)𝑆1(𝑡𝑖:𝑛)𝑆2(𝑡𝑖:𝑛),                                                                   (38) 

      𝛹∗∗(𝑡𝑟:𝑛)

= 
1

∗∗∗
(𝑡𝑟:𝑛)

2

∗∗∗
(𝑡𝑟:𝑛)𝑂1(𝑡𝑟:𝑛)𝑂2(𝑡𝑟:𝑛),                                                                                     (39) 

𝜕2𝑙

𝜕𝛼𝑗
2 = −𝑝𝑗 {∑𝐴𝑗

∗∗(𝑡𝑖:𝑛) + (𝑛 − 𝑟)𝐵𝑗
∗∗(𝑡𝑟:𝑛)

𝑟

𝑖=1

},                                                                         (40) 

where  

𝐴𝑗
∗∗(𝑡𝑖:𝑛) = 

𝑗

∗∗
(𝑡𝑖:𝑛)𝑆𝑗

\(𝑡𝑖:𝑛) − 𝑝𝑠𝑆𝑗
2(𝑡𝑖:𝑛)

𝑗

∗∗
(𝑡𝑖:𝑛)

𝑠

∗∗
(𝑡𝑖:𝑛) ,   j=1, 2, s=1, 2, s≠j,        

𝐵𝑗
∗∗(𝑡𝑟:𝑛) =  

𝑗

∗∗∗
(𝑡𝑟:𝑛)  𝑂𝑗(𝑡𝑟:𝑛) 𝑍𝑗(𝑡𝑟:𝑛) + 𝜏 ∗∗(𝑡𝑟:𝑛)  𝑂𝑗(𝑡𝑟:𝑛)                            
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𝑍𝑗(𝑡𝑟:𝑛) = ln(𝑡𝑟:𝑛) − 𝑡𝑟:𝑛

𝛼𝑗 ln(𝑡𝑟:𝑛) − 𝑡𝑟:𝑛

𝛼𝑗 𝑒−𝑡𝑟:𝑛

𝛼𝑗

ln(𝑡𝑟:𝑛) (1 − 𝑒−𝑡𝑟:𝑛

𝛼𝑗

)−1 ,                                          

𝑆𝑗
\(𝑡𝑖:𝑛) = −𝛼𝑗

−2 + 𝑡
𝑖:𝑛

𝛼𝑗 ln2(𝑡𝑖:𝑛) − {(𝜃𝑗 − 1) ln(𝑡𝑖:𝑛) [𝑒−2𝑡
𝛼𝑗

𝑡2𝛼𝑗 ln(𝑡𝑖:𝑛)(1 − 𝑒−𝑡
𝑖:𝑛

𝛼𝑗

)−2]},          

and                 

,)()()(
1

;1;11

11

2

















r

i

nrni tBrntAp
l


                                                                          (41) 

where  

𝐴1
∆(𝑡𝑖:𝑛) = 𝑝2

1

∗∗
(𝑡𝑖:𝑛)

2

∗∗
(𝑡𝑖:𝑛)𝑘1

∗(𝑡𝑖:𝑛)𝑆1(𝑡𝑖:𝑛) + 
1

∗∗
(𝑡𝑖:𝑛)𝐷1

∗(𝑡𝑖:𝑛),                               

𝐵1
∆(𝑡𝑟:𝑛) = 

1

∗∗∗
(𝑡𝑟:𝑛)𝐷1

∗(𝑡𝑟:𝑛) + 𝜏1
∆(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛),                                                                          

where  

𝐷1
∗(𝑡𝑖:𝑛) = 𝑒−𝑡

𝑖:𝑛

𝛼𝑗

𝑡𝑖:𝑛
𝛼1(1 − 𝑒−𝑡𝑖:𝑛

𝛼1
)−1ln(𝑡𝑖:𝑛), 

𝜏1
∆(𝑡𝑟:𝑛) = 

1

∗∗∗
(𝑡𝑟:𝑛)𝑂1(𝑡𝑟:𝑛)

+ 𝑝1
1

∗∗∗2

(𝑡𝑟:𝑛)𝑂1(𝑡𝑟:𝑛),                                                                                       (42) 

𝜕2𝑙

𝜕𝜃2𝜕𝛼1
= −𝑝1𝑝2 {∑𝐴1

∆∆(𝑡𝑖:𝑛) + (𝑛 − 𝑟)

𝑟

𝑖=1

𝐵1
∆∆(𝑡𝑟:𝑛)},                                                              (43) 

where  

𝐴1
∆∆(𝑡𝑖:𝑛) = −

1

∗∗
(𝑡𝑖:𝑛)

2

∗∗
(𝑡𝑖:𝑛)𝑘2

∗(𝑡𝑖:𝑛)𝑆1(𝑡𝑖:𝑛),                                                                               

𝐵1
∆∆(𝑡𝑟:𝑛) = 

1

∗∗∗
(𝑡𝑟:𝑛)

2

∗∗∗
(𝑡𝑟:𝑛)𝑂1(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛),                                                                

𝜕2𝑙

𝜕𝜃1𝜕𝛼2
= −𝑝1𝑝2 {∑𝐴2

∆∆(𝑡𝑖:𝑛) + (𝑛 − 𝑟)

𝑟

𝑖=1

𝐵2
∆∆(𝑡𝑟:𝑛)},                                                              (44) 

where  

𝐴2
∆∆(𝑡𝑖:𝑛) = 

1

∗∗
(𝑡𝑖:𝑛)

2

∗∗
(𝑡𝑖:𝑛)𝐾1

∗(𝑡𝑖:𝑛)𝑆2(𝑡𝑖:𝑛),                                                                       

𝐵2
∆∆(𝑡𝑟:𝑛) = 

1

∗∗∗
(𝑡𝑟:𝑛)

2

∗∗∗
(𝑡𝑟:𝑛)𝑂2(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛),                                                                 

𝜕2𝑙

𝜕𝜃2𝜕𝛼2
= 𝑃2 {∑𝐴2

∆(𝑡𝑖:𝑛) + (𝑛 − 𝑟)

𝑟

𝑖=1

𝐵2
∆(𝑡𝑟:𝑛)},                                                                          (45) 

𝐴2
∆(𝑡𝑖:𝑛) =  𝑃1


1

∗∗

(𝑡𝑖:𝑛) 2

∗∗

(𝑡𝑖:𝑛)𝐾2
∗(𝑡𝑖:𝑛)𝑆2(𝑡𝑖:𝑛) + 

2

∗∗

(𝑡𝑖:𝑛)𝐷2
∗(𝑡𝑖:𝑛), 

𝐵2
∆(𝑡𝑟:𝑛) = 

2

∗∗∗

(𝑡𝑟:𝑛)𝐷2
∗(𝑡𝑖:𝑛) + 𝜏2

∆(𝑡𝑟:𝑛)𝜔∗(𝑡𝑟:𝑛), 

𝜏2
∆(𝑡𝑟:𝑛) = 

2

∗∗∗
(𝑡𝑟:𝑛)𝑂2(𝑡𝑟:𝑛) + 𝑝2

2

∗∗∗2

(𝑡𝑟:𝑛)𝑂2(𝑡𝑟:𝑛),    

and 

𝐷2
∗(𝑡𝑖:𝑛) = 𝑒−𝑡𝑖:𝑛

𝛼2
𝑡𝑖:𝑛
𝛼2 ln(𝑡𝑖:𝑛)(1 − 𝑒−𝑡𝑖:𝑛

𝛼2
)−1, 

For  j=1, 2 the functions Sj (.) and 𝑂𝑗(.) are as given by (29) and (30),
𝑗

∗∗
(.) and 

𝑗

∗∗∗
(.) by(25)  

NUMERICAL RESULTS 

 

Real Data Set 
To illustrate the approaches developed in the previous chapter ,we consider the data set 

presented in Aarset (1987) to identify the bathtub hazard rate contains life time of 50 industrial 

devices put on life test at time zero.  

Considering the data in Aarset (1987)) we fit (MTEW) distribution to the data set and 

summarized it in table (1) by using MATHCAD package (2011). We have presented the 
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maximum likelihood of the vector parameters 𝜃 of MTEW distribution. The estimations are 

conducted on the basis of type-II censored samples 

 

Table (1): Maximum likelihood estimates for the four shape parameters 
211 ,,   and 

2  of 

MTEW distribution for Aarset (1987) data. 

Paramete MLE MSE Var 

𝛼1 = 1 1.040 0.14 0.138 

𝜃1 = 0.5 0.540 0.030 0.023 

𝛼2 = 1 0.930 0.09 0.0851 

𝜃2 = 0.5 0.490 0.02 0.020 

 

Simulation Study: 

 

In the chapter three, the maximum likelihood estimators of the vector parameter θ of MTEW 

distribution is presented . In order to assess the statistical performances of thes estimates, a 

simulation study is conducted. The computations are carried out for censoring percentages of 

60% for each sample size (n =10, 15, 20, 25, 30, 40 and 50). The mean square errors (MSE's) 

using generated random samples of different sizes are computed for each estimator. 

  

- Simulation study for classical method (MLE's) 

Simulation studies have been performed using MATHCAD for illustrating the new results for 

estimation problem. We obtained the performance of the proposed estimators using Maximum 

likelihood estimation method through a simulation study.  1000 random sample of size n=10, 

15, 20,30, 40 and 50, were generated from MTEW distribution and used to study the properties 

of maximum likelihood estimators, with diferent values of the parameter to study the properties 

of MLE's estimators.  

MATHCAD package is used to evaluate the ML estimators under censored type-II using 

equations (24) and (31) for diffrent values of the parameters: (𝜃1 = 2.5, 𝜃1 = 1.1 , 𝛼2 =
2.5, 𝜃2 = 1.3) and (𝛼1 = 2.5,  𝜃1 = 1.4 , 𝛼2 = 2.5,  𝜃2 = 1.7) and mixing proportion (p = 0.3, 

0.2). The performance of the resulting estimates of the parameters has been considered in terms 

of the mean square error (MSE). Furthermore, for each estimators the skewness, kurtosis and 

Pearson type of distributions will be obtained. The simulation procedures will be described 

below: 

 

Step 1:1000 random samples of size 10, 15, 20,30, 40 and 50, were generated from MTEW 

distribution. If U has a uniform (0, 1) random number, then  𝑥𝑖,𝑗 = 𝑝𝑥1𝑖,𝑗 + (1 − 𝑝)𝑥2𝑖,𝑗 where 

𝑥1𝑖,𝑗 = [−ln (1 − (𝑢𝑖,𝑗)
1

𝜃1]
1

𝛼1 , 𝑥2𝑖,𝑗 = [−ln [1 − (𝑢𝑖,𝑗)
1

𝜃2]]
1

𝛼2   follows MTEW distribution. 

Step 2: Choose the number of failure r, we choose r to be less than the sample size n. 

Step 3: Newton-Raphson method was used for solving the equations (24) and (31), respectively, 

to obtain the ML estimators of the unknown parameters 𝛼1,  𝜃1 , 𝛼2 𝑎𝑛𝑑  𝜃2. 

Step 4: The MSE, and the moment about the mean are obtained to compute the skewness, 

kurtosis and Pearson criterion KP to determine Pearson type of the estimators. We report 

average estimates obtained by solving the method of maximum likelihood with mean squared 

error in parentheses MSE for 𝜃 =
∑(𝜃̂−𝜃)2

1000
+ [(𝜃 − 𝜃)2]. 
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Table 2: MLE for the parameters of mixture exponentiated Weibull distribution using type II 

censoring when  𝑝 = 0.3 , 𝑟 = 6, 𝛼1 = 2.5, 𝜃1 = 1.1, 𝛼2 = 2.5 and  𝜃2 =1.3 and different 

sized samples. 

n  MLE Bias MSE Var SE Skewness Kurtosis 
Pearson 

type 

10 

𝛼1 3.523 1.023 4.322 3.275 0.181 1.995 6.835 I 

𝜃1 1.211 0.111 0.180 0.167 0.041 0.714 4.717 IV 

𝛼2 3.366 0.867 2.788 2.036 0.143 1.524 4.939 I 

𝜃2 1.236 0.064 0.155 0.151 0.039 0.839 5.098 IV 

15 

𝛼1 2.836 0.336 1.752 1.639 0.085 2.076 7.085 I 

𝜃1 1.235 0.135 0.115 0.097 0.021 0.321 2.927 I 

𝛼2 2.705 0.205 1.134 1.092 0.070 1.998 6.677 I 

𝜃2 1.351 0.051 0.121 0.118 0.023 0.571 3.530 VI 

20 

𝛼1 2.648 0.148 0.322 0.300 0.027 0.752 5.577 IV 

𝜃1 1.207 0.107 0.067 0.056 0.012 0.869 5.090 IV 

𝛼2 2.551 0.051 0.268 0.265 0.026 0.427 3.682 IV 

𝜃2 1.293 0.007 0.048 0.048 0.011 0.576 5.432 IV 

30 

𝛼1 2.465 0.035 0.184 0.183 0.014 -1.027 3.303 I 

𝜃1 1.242 0.142 0.070 0.051 0.007 1.634 5.493 I 

𝛼2 2.365 0.135 0.176 0.158 0.013 -0.845 3.204 I 

𝜃2 1.356 0.056 0.057 0.054 0.008 1.437 4.671 I 

40 

𝛼1 2.468 0.032 0.247 0.246 0.012 -0.218 3.801 IV 

𝜃1 1.244 0.144 0.062 0.041 0.005 1.569 5.362 I 

𝛼2 2.349 0.151 0.234 0.211 0.011 -0.416 3.342 IV 

𝜃2 1.457 0.157 0.188 0.634 0.010 2.096 7.604 I 

50 

𝛼1 2.528 0.028 0.190 0.189 0.009 -1.375 5.221 I 

θ1 1.189 0.089 0.026 0.018 0.003 0.832 3.869 I 

𝛼2 2.394 0.106 0.199 0.188 0.009 -1.361 4.302 I 

𝜃2 1.381 0.081 0.128 0.121 0.007 2.546 9.719 I 
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Table (3): MLE for the parameters of mixture exponentiated Weibull distribution 

         using type- II censoring when  𝑝 = 0.2 , 𝑟 = 6, 𝛼1 = 2.5, 𝜃1 = 1.4, 𝛼2 = 2.5, 
         𝜃2 =1.7 and different sized samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  MLE Bias MSE Var SE Skewness Kurtosis 
Pearson 

type 

 10 

𝛼1 3.859 1.359 7.098 5.251 0.229 1.781 6.112 I 

𝜃1 1.529 0.129 0.347 0.330 0.057 0.074 2.741 I 

𝛼2 3.678 1.178 4.618 3.230 0.180 1.387 4.476 I 

𝜃2 1.600 0.010 0.333 0.323 0.057 -0.020 2.448 I 

 

15 

𝛼1 3.158 0.658 3.085 2.652 0.109 2.282 8.075 I 

𝜃1 1.620 0.220 0.222 0.173 0.028 0.331 3.342 IV 

𝛼2 3.0467 0.547 2.186 1.887 0.092 1.947 6.926 I 

𝜃2 1.688 0.012 0.159 0159 0.027 0.224 3.133 IV 

20 

𝛼1 2.863 0.363 1.621 1.489 0.061 2.953 14.609 I 

𝜃1 1.516 0.116 0.102 0.089 0.015 0.170 4.513 IV 

𝛼2 2.777 0.277 1.390 1.313 0.057 3.021 15.677 I 

𝜃2 1.666 0.034 0.124 0.123 0.017 0.111 3.949 IV 

30 

𝛼1 2.715 0.215 0.796 0.751 0.029 1.873 8.896 VI 

𝜃1 1.503 0.103 0.069 0.058 0.008 -0.243 6.164 IV 

𝛼2 2.574 0.074 0.398 0.393 0.021 1.000 4.874 VI 

𝜃2 1.711 0.011 0.115 0.115 0.011 1.225 5.027 I 

40 

𝛼1 2.709 0.209 1.210 1.166 0.027 2.928 13.715 I 

𝜃1 1.508 0.108 0.094 0.082 0.007 0.008 5.412 IV 

𝛼2 2.470 0.030 0.480 0.480 0.017 0.988 0.988 IV 

𝜃2 1.765 0.065 0.177 0.173 0.010 1.039 4.261 I 

50 

𝛼1 2.511 0.012 0.222 0.222 0.009 -0.552 3.706 IV 

𝜃1 1.558 0.158 0.079 0.054 0.005 1.179 3.825 I 

𝛼2 2.399 0.101 0.268 0.258 0.010 -0.705 3.912 VI 

𝜃2 1.814 0.114 0.194 0.181 0.009 1.713 5.722 I 
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Table (4): Asymptotic variances and covariances of estimators of the mixture exponentiated 

Weibull distribution under type II Censoring. 

n 

Case 1 Case 2 

1 1 2 2( 2.5, 1.1, 2.5, 1.3)       1 1 2 2( 2.5, 1.4, 2.5, 1.7)       

1̂ 1̂ 2̂ 2̂ 1̂ 1̂ 2̂ 2̂ 

 572.3 -0.4810 -0.6740 -0.8730 37235 -1.7738 -0.8956 -0.9657 

10 - 775.. 0.4213 0.4720 - 77557 0.9679 0.8739 

 
- - 2775. -0.3210 - - 57257 -1.3418 

- - - 77535 - - - 77525 

 57.51 -0.3320 -0.4320 -0.6520 27.32 -0.9184 -0.7834 -0.8534 

15 - 7771. 0.3512 0.4105 - 775.5 0.7856 0.6526 

 
- - 57712 -0.1210 - - 57... -1.1173 

- - - 7755. - - - 77531 

 77577 -0.1095 -0.4095 -0.3211 574.1 -0.7871 -0.6311 -0.7128 

20 - 7773. 0.1705 0.2205 - 777.1 0.5782 0.4815 

 
- - 772.3 -0.0982 - - 57555 -0.9452 

- - - 7774. - - - 77525 

 772.. -0.0754 -0.2162 -0.1834 77354 -0.5637 -0.4732 -0.5407 

30 - 77735 0.0534 0.0863 - 7773. 0.1052 0.1243 

 
- - 7753. -0.0536 - - 77515 -0.6578 

- - - 77734 - - - 77553 

 7724. -0.0315 -0.0729 -0.0694 575.. -0.1967 -0.0869 -0.1824 

40 - 77745 0.0378 0.0713 - 777.2 0.0935 0.1031 

 
- - 77255 -0.0213 - - 774.7 -0.4325 

- - - 77.54 - - - 775.5 

 775.1 -0.0180 -0.0514 -0.0403 77222 -0.0831 -0.0721 -0.0857 

50 - 7775. 0.0125 0.0471 - 77734 0.0714 0.0927 

 - - 775.. -0.0094 - - 7723. -0.2189 

 - - - 77525 - - - 775.5 

 

CONCLUDING REMARKS 

 

Simulation results are displayed in tables 2, 3and 4, which give the posterior mean and MSE. 

Simulation studies are adopted for different sized samples. We have presented the maximum 

likelihood estimators of the vector parameters θ, of the life times follow MTEW distribution.  

Our observations about the results are stated in the following Points:1-Tables 2, 3 shows the 

maximum likelihood estimators, of the unknown parameters, MSE, skewness, kurtosis and 

Pearson type distribution. From these tables, we conclude that the MLE's estimators have the 
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minimum MSE for most sample sizes. As the sample size increases MSE's and bias of the 

estimated parameters (α1  , 𝜃1, α2  , 𝜃2) decreases. This indicates that the MLE's estimators 

provide asymptotically normally distributed and consistent estimators for the parameters. 

Generally, we observed that the estimators for the unknown parameters α1and α2 have Pearson 

type I distribution. Also, we observed that the estimators for the unknown parameters θ1and θ2 

have Pearson type IV distribution .  

 

2-Table 4 shows that the variances for all parameters in case-1 less than the variances for all 

parameters in case-2. It is immediate to note that the average estimate of Cov(α̂1  , 𝛼̂2) less than 

the average estimate of Cov(α̂1  , 𝜃1), the average estimate of Cov(θ̂1  , 𝛼̂2) is less than the 

average estimate of Cov(θ̂1  , 𝜃2) , when n increases the covariance decrease. The values of 

Cov(α̂1  , 𝜃2), Cov(𝜃1  , 𝜃2) and Cov(α̂1  , 𝛼̂2) are very small and converge to zero. 
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