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ABSTRACT: The question of when an HIV patient should be subjected to therapy using 

highly active antiretroviral therapy (HAART) is very challenging. The direct application of 

the existing probabilistic models, like the stationary Markov Chain for the determination of 

the life expectancies of patients and their absorption probabilities might not always be 

reliable. In this work, we propose the smoothed non-stationary Markov chain approach 

which is conceptually efficient than the stationary Markov chain and non-stationary Markov 

chain models. We examined a total of 1094 HIV patients (cohort) from January – December 

2012 with follow-up in their CD4 cell transition counts, collected from the Medical 

Examination Department of the Nnamdi Azikiwe University Teaching Hospital, Continuous 

Quality Improvement HIV Care Unit (NAUTH), Nnewi – Anambra State – Nigeria. The 

patients were grouped into five immunological states developed by Guiseppe Di Biase et al 

(2007). The five states considered were as follows: state one (CD4 > 500 cells/mm3), state 

two (350 < CD4 ≤ 500 cells/mm3), state three (200 < CD4 ≤ 350 cells/mm3), state four (CD4 

> 200 cells/mm3), state five (Death). These states define the seriousness of the sickness based 

on the epidemiological state of the patients CD4 cell counts. The estimation of the smoothed 

non-stationary probabilities were computed using the exponential smoothing technique. The 

results obtained show that patients in state I, state II, State III, and state IV, have the 

following absorption probabilities: 0.6159, 0.6080, 0.5915 and 0.6122. The results also show 

that the absorption probabilities of patients with low CD4 counts do not differ appreciably 

from patients with higher CD4 cell counts, meaning that low CD4 cell counts do not generally 

imply a faster rate of absorption of patients suffering from the infection [Osisiogu U. A., 

Nwosu C. A (2013)], studies have shown that patient’s age is a relevant factor to the rate of 

absorption. 

 

KEYWORDS: Smoothed Non-stationary Markov Chain Model, Exponential Smoothing 
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INRODUCTION 

 

The outbreak of the HV/AIDS epidemic in Nigeria in 1981 and 1983 respectively and the 

report of the cases of the disease in the thirty-six states of the federation including Abuja, the 

Federal capital territory made researchers to carry out different studies on the disease; like 

the determination of the life expectancy of patients [Osisiogu U. A. and Nwosu C. A (2013)], 

predicting future CD4 cell counts of HIV patients [Osisiogu U. A. and Nwosu C. A (2013)], 

comparing models to determine the most efficient one that can predict when to start the 
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highly active antiretroviral therapy (HAART) [Osisiogu U. A. and Nwosu C. A. (2013)]. The 

study provides the use of epidemiological data in estimating the impact of HIV/AIDS 

dynamics using the Smoothed Non-stationary Markov Chain Model. The HIV fatal effect 

arises from the attack of the CD4 cell counts which play a pivotal regulatory role in the 

immune response to infections and tumours [Anderson R. M. et al (1986)]. The hallmark of 

the HIV/AIDS infection is the death of the patient. A number of approaches have been used 

for the HIV/AIDS dynamics, we shall demonstrate the use of the Smoothed Non-stationary 

Markov Chain Model and the fundamental matrix of the absorbing Markov Chain in this 

study. 

 

NOTATIONS 

 i T = Calendar time in months, T = (0, 1, 2, …) 

 ii K = the number of states in the system. 

 iii nij(T) = the number of patients in state i at month T, who  

   transited to state j at month T+I. 

 iv ni(T) = the number of patients in state i at month T. 

 v ni,k(T) = the number of patients in state i who died at month T 

 vi Pij = nij(T) 

          ni(T) : Probability of patients in state i at month T, who  

transited to state j at the end of the month T. 

 

 vii Wi = ni,k(T) 

         ni(T) : death rate of patients in state i at month T. 

 

 viii N(T) = Σni(T): total number of patients in state I at the  

    beginning of the month T. 

 

 ix noj(T+I): New entrants into state j at the beginning of the  

      month T. 

 

THE MARKOVIAN MODEL FOR THE CD4 CELL COUNTS FOR THE 

SMOOTHED NON-STATIONARY MARKOV CHAIN MODEL. 

 

 Let the difference equation: 

 nj(T+I) = Σ   nij(T) + noj(T+I) …………………………….. [1] 

     (i = 1, 2, … N) (T + 0, 1, 2, …) 

 denote the expected values of the CD4 cell counts, where the bars are the expected 

values (i = 1, 2, … k). The above equation in other words is saying that patients in state j are 

patients who transited to state j. Some of these variables may assume zero values especially 

when the study has to do with a cohort, where no newly infected patients are allowed in, i.e. 

    no.c = 0 where c = Cohort study. 

 We can express the transition flow of the newly infected patients as wastages i.e. 

    no.j(T) = Wj(T+I)   

 Then equation [1] becomes 

  nj(T+I) = Σ nij(T) + Wj(T+I) ……………………………….. [2] 

  

 Step 1 
  

N 

i=j 

N i=j 

i=j 
N 

T 
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Pij = Σ nij(T)   

   ………………..……………….… [3] 

 Σ ni(T) 

 

 Substituting equation [3] in equation [2]   

  nj(T+I) = Σ ni(T) Pij + Wj(T+I) …………………………….. [4] 

 In vector form, equation [4] becomes: 

  n(T+I) = n(T) P + W(T+I) ……………………………..….. [5] 

 

 Step 2 
If the probability is non-stationary, the probability is denoted by notation [6]: 

Pij(T) = nij (T)   

    ni (T)   ……………………………………… [6] 

 

 Substituting equation [6] into equation [2], we have   

  nj(T+I) = Σ ni(T) Pij (T) + Wj(T+I) …………………………[7] 

    (i,j = 1, 2, … k) (T = 0, 1, 2, …) 

 In vector form, equation [7] becomes: 

  n(T+I) = n(T) P(T) + W(T+I) …………………………….. [8] 

Step 3 

The Smoothed Non-stationary Markov Chain Model is an extension of the Non-stationary 

Markov Chain Model, whose structure is known by the T- step transition probability matrix, 

unlike the Stationary Markov Chain that is associated with powers of one step transition 

probability matrix P, which is a common estimate of the transition probability matrices over 

the past months on the assumption that they are stationary over time [Osisiogu U. A. (2004)].  

We note that these estimates are the sum of the estimates for each month, where the weights 

are proportional to n(T). If we vary these weights and put more weights on the current 

transition matrices and less weights on the previous, we obtain the Smoothed Non-stationary 

Markov Chain Model, and this depends on the stochastic variation prevalent at the time of 

the data, Equation [6] now becomes: 

Pij (T) = Σ βi(r) Pij (T)  ……………….…………………[9] 

  

Where r = [T* - T], [T = 0, 1, 2, … T*] 

  βi(r) = αi (I - αi)
r  ……………………………………….[10] 

 

 We can now rewrite equation [9] as: 

  Pij (T) = αi Pij (T) + (I - αi) Pij (T - I) ………………….. [11]     

    (i, j = 1, 2, … k) (T = 0, 1, 2, … T*) 

  

and Pij (T*) is as defined in equation [9]. Thus, the transition probability matrix P used in this 

model for future prediction is the one whose elements are derived from equation [11] given. 

 

that: 

  P = [Pij (T*)] (i, j = 1, 2, … k) ………………………….... [12]     

In vector form, the smoothed Non-stationary Markov Chain Model becomes: 

  nj(T+I) = n(T) P(T) + W(T+I) …………………………….. [13] 

 

 

T=I 

T 

T=I 

N 
i = I 

i = I 
N 

T = 0 

T 

^ 

^ 
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^ 

^ 

^ 
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CANONICAL FORM 

 

A Markov Chain with absorbing states can be represented in a canonical form by 

renumbering the states such that the transient states come first. If there are r absorbing states 

and t transient states, the transition matrix will have the following canonical form: 

 

     Q        R 

    P =   …………………………… [14] 

     O         I 

 

Where I is an rxr identity matrix, O is an rxt zero matrix, R is a nonzero txr matrix and Q is a 

txt matrix. The first t states are transient and the last r states are absorbing. 

 

FUNDAMENTAL MATRIX 

 

For an absorbing Markov Chain P, the matrix N = (I – Q)-1 is called the fundamental matrix 

for P. The entry nij of N gives the expected number of times the HIV patients are in the 

transient state j having started from the transient state i. The fundamental matrix N helps in 

the calculating of the life expectancy of these patients in state j who entered the system in 

state i, and also to determine the absorption probabilities of these patients assuming that these 

variables  are stochastic random variables prevailing in the HIV/AIDS dynamics. We can 

establish the existence of the inverse of the matrix (I – Q) from the following definition and 

theorem [Kendall M. G. and Stuart A. (1961)]. 

 

DEFINITION 

 

Let X be the length of time unit t, a patient spends in state j, starting initially from state i. Let 

U = E(X ) be the expected length of time unit t a patient spends in state j, starting initially 

from state i 

 

THEOREM 

 

Let Q be the transition matrix of the infected HIV patient. Let [U ] = Ut, where [U ] is 

defined above. Then:  

  Ut = ( I – Q)-1 ………………………………………[15] 

Where U = [U ] is a matrix. 

 

PROOF 

 

Let Z be an indicator function defined as: 

         1, If a patient in state i moves to state j  

after t time unit 

 Z   = 

 

         0, Otherwise 

The probability distribution of Z for a fixed t is given as: 

   P[Z  = 0] = I – Q  ……………………….. [16] 

 

t 

ij 

ij 

t t 
ij 

ij 

t 

t 

ij 

ij t Lim 

t - ∞ 

t 

ij 

t 

ij 

t 
 

ij 

t 
 

ij t 
 

ij 

t 
 

ij 



European Journal of Statistics and Probability  

Vol.3, No.2, pp.1-11, June 2015 

      Published by European Centre for Research Training and Development UK (www.eajournals.org) 

5 

ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

 

   P[Z  = I] = I – Q  ……………………….. [17] 

 

Then the expected value of Z is given as: 

   E [Z ] = Q  ……………………………… [18] 

 

  But  X = Σ  Z  …………………………………. [19] 

Therefore U  = E [X ] = E[Σ Z ] = Σ E[Z ] = Σ Q 

 

   = (I – QT) (I – Q)-1 

 

Where I is an identity matrix. Given that Ut = [U ] 

Then         Ut = (I – Q)-1………………………………………….[20] 

 

Equation [20] is called the fundamental matrix of P. 

 

ABSORPTION PROBABILITIES 

 

THEOREM 

Let bij be the probability that a patient will be absorbed in the absorbing state j, having started 

initially from the non-absorbing state i. Let B be the matrix with entries bij. Then B is a txr 

matrix and 

   B = NR ……………………………………….. [21] 

Where N is the fundamental matrix and R is as in the canonical form. 

 

PROOF 
We have 

      Bij = ΣΣq   rkj 

   = ΣΣq   rkj  

  = Σ nik rkj 

  = (NR)ij 

 

 

 

 

7. APPLICATION 

To illustrate the efficiency of the models, we apply it to a cohort study of 1094 HIV patients 

with follow-up in their transition counts from Jan – Dec 2012. 

 

DATA 

The data were sourced from the medical examination department of the Nnamdi Azikiwe 

University Teaching Hospital, Continuous Quality Improvement HIV Care (NAUTH) 

Nnewi, Anambra State – Nigeria. 

 

METHOD 

The CD4 cell counts of these patients were classified into five immunological states based on 

the classification developed by Guiseppe Di Biase et al (2007). The five different states are 

represented by ranges of CD4 cell counts: 

    State I: CD4 > 500 cells/mm3 
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    State II: 350 < CD4 ≤ 500/mm3 

     State III: 200 < CD4 ≤ 350/mm3 

     State IV: CD4 > 500 cells/mm3 

     State V: Death (Absorbing State) 

The transition probability matrices of the cohort study for the 12 observable months were 

recorded thus: 

 

Table I: nij for the month of January 

JANUARY  I II III IV V TOTAL 

CD4 > 500 cells/mm3 I 95 99 48 18 12 272 

350 < CD4 ≤ 500/mm3 II 100 96 50 20 4 270 

200 < CD4 ≤ 350/mm3 III 70 50 95 55 7 277 

CD4 > 500 cells/mm3 IV 76 95 30 64 10 275 

Death  V 0 0 0 0 0 0 

Total        1094 

Table 1: Represents  the transition counts of the CD4 cells of the 1094 patients for the month 

of January 2012, using the above classification. Similar classifications were done for the 

months of Feb – Dec. 2012. 

 

Table II: Transition Probability Matrix for the Month of Jan  

      2012. 

 

  I II III IV V 

 I 0.349 0.364 0.176 0.066 0.044 

 II 0.370 0.356 0.185 0.074 0.015 

P = III 0.252 0.181 0.343 0.199 0.025 

 IV 0.276 0.354 0.109 0.233 0.036 

 V 0 0 0 0 1 

 

 

The transition probability matrix for the month of January in table II was computed using 

equation (6) and similar computations were done for the months of February – December 

2012. By equation (II) and a smoothing constant, α = 0.30, we obtain the transition 

probability matrix P = [Pij] whose elements are used in obtaining the life expectancy and 

absorption probabilities of the patients.  

 

 

 

 

 

 

 

^ ^ 
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Table III: Transition Probability Matrix P for the Month of Jan – Dec. 2012. 

 

  I II III IV V 

 I 0.330 0.327 0.206 0.116 0.021 

 II 0.318 0.341 0.205 0.112 0.015 

P = III 0.237 0.246 0.318 0.150 0.016 

 IV 0.242 0.325 0.256 0.157 0.018 

 V 0 0 0 0 1 

 

By equation [14], we represent the transition probability matrix P in canonical form. 

  

Table IV: Showing the Canonical Form of the Transition Probability Matrix P. 

 

  I II III IV V 

 I 0.330 0.327 0.206 0.116 0.021 

 II 0.318 0.341 0.205 0.112 0.015 

P = III 0.237 0.246 0.318 0.150 0.016 

 IV 0.242 0.325 0.256 0.157 0.018 

 V 0 0 0 0 1 

 

Table IV represents the canonical form of the transition probability matrix P, where Q, R, O, 

and I are shown as in the canonical form. 

 

  

  I II III IV 

 I 0.330 0.327 0.206 0.116 

 II 0.318 0.341 0.205 0.112 

Q = III 0.237 0.246 0.318 0.150 

 IV 0.242 0.325 0.256 0.157 

 

   

^ 

^ 

^ 

^ 

^ 

^ 

          I      0.021 

 II      0.015 

R =    III    0.016 

 IV    0.018 
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  O = [0 0 0 0]   I = [1] 

From the canonical form, the matrix (I – Q) is obtained and the inverse, N = (I = Q)-1 

computed (see equation 20). 

 

Table V: Showing the Life Expectancy of Patients. 

 

 I 11.275 10.941 8.382 4.497 

 II 10.232 11.922 8.356 4.479 

N = (I – Q)-1 = III 9.846 10.506 9.248 4.396 

 IV 10.171 10.928 8.436 5.539 

 

The total life expectancy of patients before absorption are obtained by: 

 

  Σ uij = NC   

Where Σ uij is the total life expectancy, N, the fundamental matrix and C, a column vector all 

of whose entries are I. 

 

 

 I 35.095 

 II 34.989 

Σ uij = III 33.996 

 IV 35.074 

 

 

From the equation [21], we compute the absorption probability of the patients. From the 

canonical form 

 

  

 I 0.021 

 II 0.015 

R = III 0.016 

 IV 0.018 

 

 

 

 

N 
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J = 1 
N 

N 

J = 1 
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  B = NR  where N = fundamental matrix. 

    

 I 0.6159 

 II 0.6080 

B = III 0.5915 

 IV 0.6122 

 

B denotes the absorption probabilities in each state of the Markov Chain. 

 

RESULT AND DISCUSSION 

 

The results obtained show that patients in state I, state II, state III and state IV have the 

following absorption probabilities: 0.6159, 0.6080, 0.5915, and 0.6122. Some studies carried 

out on HIV/AIDS dynamics have shown that patient’s age is a relevant factor to forecast the 

transitions among the different levels of seriousness of the disease [Zelalem Getahun Dessie 

(2014)]. The probability that an HIV/AIDS patient in any of the good states will transit to the 

absorbing state (death state) is greater with increasing age, irrespective of the current state 

and age of the patient. More generally, the probability of being absorbed decreases with 

increasing CD4 cell counts over time. Therefore, if patients are not subjected to therapy at the 

appropriate time using the highly active antiretrovirals (HAART), their absorption 

probabilities increases as a result of the decrease in their CD4 cell counts [Osisiogu U. A. and 

Nwosu C. A. (2013)]. The role of the CD4 cell count in HIV management cannot be over-

emphasized and the impact of HAART over the past 20 years has made HIV more of a 

chronic disease for practitioners to manage, requiring careful clinical monitoring. Laboratory 

markers such as the HIV-1 RNA viral load and CD4 cell count are regularly used for patient 

management in addition to predicting disease progression and/or treatment outcomes. The 

HIV viral load is considered to be the gold standard for evaluating treatment success and 

absorption probabilities, although it is often limited to cost. The CD4 cells are vital utility 

immunological components for the prediction of HIV disease progression and time for 

absorption of any HIV patient. The articulation of these variables: the CD4 cell / HIV-1 RNA 

viral loads will aid clinicians to examine the added value of the CD4 cell counts in the 

management of a person with HIV infection. 

 

CONCLUSION 

 

The Smoothed Non-stationary Markov Chain Model is applied to capture the HIV/AIDS 

dynamic progression and to determine the absorption probabilities of HIV patients. The 

model considers the length of stay (life expectancy) of the HIV patients, the randomness in 

the different states in which the infection can evolve and the probability of these patients 

being absorbed. The following can be concluded from this study.  
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The probability of dying decreases with increasing CD4 cell counts over time. At any time of 

the process, there is more likely to be in worse state than be in a better one. In general, the 

absorption probability of an HIV/AIDS patient depends on his/her current state of the disease 

in such a way that lower CD4 cell counts are associated with high risk of being absorbed. The 

dynamic nature of the AIDS progression is confirmed with particular findings that there is 

more likely to be in worse state than better one unless interventions are made. It is 

recommended that patients should be advised to keep up the ongoing HAART treatment 

services in most effective ways with the careful considerations of recent disease status of the 

HIV/AIDS patients. 
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