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ABSTRACT: It is well known that, the classical Durbin-Watson test is the most commonly 

used regression technique for detecting autocorrelation. However, this test is affected by 

outliers.  Therefore, we cannot both detect the autocorrelation of disturbances and remedy 

the harm caused by this phenomenon. In this paper, we conjecture how to robustify the 

Durbin-Watson test for detecting the autocorrelation problem.  A description of  the least 

trimmed squares regression and least weighted squares follows .  Thus, we can to robustify 

the Durbin-Watson test for residuals of the least trimmed squares regression.  An example 

with real data supports the practical character of this paper. 
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INTRODUCTION  

Consider the following classical linear regression model as :  

ttppt121t e  X β  , ...  X β  β  Y    , t = 1, 2, … , n ,  (1) 

Which can be rewritten in the usual matrix notation as eXβY  .   

The design matrix X consists of p columns, where the first one is a vector (1,1, …, 1)' 

corresponding to the intercept.  From the usual assumption I σ  (c)Var 2 , it follows 

(among others) that the disturbances n1 e , ... ,e are independent.  Let us assume that the data 

are observed in equidistant time moments, which is a crucial requirement . 

 

We will model the violation of independence of disturbances by an AR(1) process, namely: 

t1-tt ν  e ρ  e      ,                    t = 2, … , n  ,          (2) 

with a parameter 1  ρ  1 , ρ  , and uncorrelated random variables 2, … , n with zero 

mean and variance 
2
vσ  ,    σ  0 2

.  This model is not only simple, but it also turns out 

that it works well in many practical situations.  Judge et al. (1985) describes tests and 

estimation procedures for models with more complicated behaviour of  disturbances . 
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Let us denote by b to the ordinary least squares estimator of the parameter .  As we are 

never able to observe disturbances work with residuals  , which can be viewed as an estimate 

of disturbances.  This is the reason, why the topic of this paper is often called autocorrelated 

residuals, when in fact the disturbances are autocorrelated. We hope this cause no confusion.  

Let us also note that, the independence of disturbances does not the independence of 

residuals, however, in the model with independent disturbances, the independence of  

residuals can be expected to be violated only slightly. 

 

The consequences of autocorrelated disturbances can be severe, especially when ρ  is close 

to 1.  The estimator b loses its efficiency.  Worse than that, the classical estimator of Var (b) 

is on longer unbiased.  Therefore, we cannot trust confidence intervals and tests for .  Next, 

the outline of this paper is as follows.  In section (2), we describe the Durbin-Watson test and 

the Cochrane-Orcutt transformation, so that we can  both detect the autocorrelation of 

disturbances and remedy the harm caused by this phenomenon.  Section (3) is devoted to the 

describtion of the least trimmed squares and least weighted squares, and we will show how to 

robustify the Durbin-Watson test for residuals of the least trimmed squares regression.  An 

example with real data supports the practical character of this paper is presented in section (4) 

.  Section (5) concludes. 

 

Durbin-Watson Test and Cochrane-Orcutt Transformation : 

 Durbin-Watson Test: 

It is practical to know to test that the disturbances are autocorrelated.  Econometricians 

usually consider the test of independence of disturbances against an alternative of a positive 

autocorrelation, which means to test : 

 
1.  ρ  0 with   holds (2) moodel : H

against  0  ρ : H

1

0




 

The test proposed by Durbin and Watson (1950) has become a classical test of H0 

against H1. The test statistic is defined by : 
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






n

1t

2
t

n

2t

2
1-tt

u  

 )u - u (  

  d   ,    (3) 

where n1 u , ... ,u  are the residuals of the least squares regression. The distribution of d 

depends not only on p and n, but also on the design matrix X.  However, lower and upper 

bounds for critical values can be found, which are tabulated in most econometric textbooks.  

The notation )  (dL  and )  (du  is used for the lower and upper bound of the test with 

level  .   Then the decision rule is the following: 

 0L Hreject     )(d    d   

 0u Hreject not  do    )(d    d   

 conclusion no    )(d     d    )(d u  L   

There exist several approximations for the exact p value, which depends on the design matrix 

X.  Durbin and Watson (1951) proposed to transform d to the interval (0, 1); let us denote this 

transformed d by 
*d .  Then the distribution of 

*d  can be approximated by a beta distribution 

with expectation )E(d*
 and variance Var (

*d ).  The econometricians warn that this 

approximation is very rough and can be recommended only if 40 n  .  In a later paper,  

Durbin and Watson (1971) admit that their approximation is more accurate than they 

expected and their original caution was excessive.  Anyway they recommend first to use 

tables with critical values and only for an inconclusive result to use their approximation.  It is 

good to know that some statistical packages ( Such as S-plus )  compute this beta 

approximation of the Durbin-Watson test. 

 

In most textbooks, values of   )(d   nd  )(d u  L  a are tabulated for n ranging form 15 to 

100.  For smaller than 15, Pindyck and Rubinfeld (1991) recommend not to use the Durbin-

Watson test at all.  But for example, Kmenta (1986) gives tables for 

  )(d   nda  )(d u  L  beginning with 6 n  .  It would be fair to admit that the Durbin-

Watson test for such small samples is very rough.  There exists also an approximate test of  
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0  ρ : H0   against 0  ρ : H1  , based on a large – sample normal approximation.  This test 

can be used when the number of observations is so large that tables of 

  )(d   nda  )(d u  L  are not available.  The idea is that in an AR(1) process, the ( 

theoretical ) first – order autocorrelation coefficient is equal to the coefficient .  In this 

respect,  can be estimated by the empirical first-order autocorrelation coefficient as : 








n

1t

2
t

n

2t
1-tt

 u   

 u u     

  ˆ       (4) 

In this case, we reject  / π2  ρ̂ if 0  ρ : H0   . In addition, the Durbin-Watson test is a 

general test of misspecification of the model.  Although it is sensitive to the autocorrelation 

of the disturbances, it can give a significant result also for a model with a missing variable.  

This can be for example the square of one of the independent variables in the model (1). 

A misspecification of the model can be revealed by a plot of residuals 

)u ,(n  , ... , )u , 2 ( , )u , 1 ( n21 , which should be examined carefully before running the 

Durbin-Watson test. 

 

Our final notes comment the use of  the Durbin-Watson test in different situations.  For a test 

of negative autocorrelation, d - 4  is usually used as a test statistic and then the decision rule 

is the same.   A test against a two-sided alternative  0  ρ : H1  is simple to carry out , but not 

much used in practice .   

Cochrane-Ocrutt Transformation : 

Cochrane and Ocrutt (1949) proposed an iterative estimation procedure, which is a remedy 

technique  against the autocorrelation of disturbances.  When the Durbin-Watson test in the 

model (1) is significant, the following process should be used. 

Estimate  by means of ρ̂  in(4) and estimate the parameter )β , ... , (β *
ρ

*
1   using ordinary 

least squares by the following transformed model : 

1ttρ1,ttρ
*
ρ1,2tt2

*
2

*
11tt eρ̂e)Xρ̂(Xβ...)Xρ̂(Xβ)ρ̂(1βyρ̂y  

  Where,  t = 2, … , n 
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In this respect, a new estimate of  is obtained as : 

 )b ,...,b , 
ρ̂1

b
( )b ,...,(b  b *

ρ
*
2

*
1(1)

ρ
(1)
1

(1) 


    

Then calculate the following  residuals as  : 

 , Xb - Y  )u , ... , (u  u (1)(1)
ρ

(1)
1

(1)                                             (5) 

Thus, we estimate  by putting 
(1)u  to the formula (4) and repeat the same steps. This 

method converges very fast, usually two iterations are sufficient. 

 

The idea behind this method is to transform the regression model so that the disturbances are 

no more autocorrelated.  This can be checked by carrying out the Durbin-Watson test with 

residuals 
(1)u from the transformed model.  Only if this test is not significant, it is advised to 

use the results of the transformation. Let us stress that this does not happen always.  There 

can be two reasons, why the transformation does not work.  The disturbances can follow a 

more complicated model than AR(1).  But even for disturbances truly coming from the AR(1) 

model, the transformation need not work, because ρ̂  as an estimate of  is usually 

recommended only for 50 n  .Otherwise the Cohrane - Orcutt transformation is only rough. 

 

We should be aware of the so-called 
2R -syndrome.  The value of the coefficient of 

determination 
2R is typically overestimated if the disturbances are autocorrelated.  This is 

another reason for using the Cochrane-Orcutt transformation.   

Autocorrelated Residuals of Robust Regression: 

Least Trimmed Squares Regression: 

The least trimmed squares regression (LTS) is one of robust regression methods with a high 

break-down point.  Before defining the LTS estimator LTSb , Let us denote the real line by 

R and the residual corresponding to the t-th observation by : 

tppt221t
(b)
t  Xb- ... - Xbbyu       for any     

p
1 R)bp,...,(bb  , 

            t = 1, … ,  n                                       (6) 
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Let us order the squared residuals as : 

   (b). u  ...  b u  (b) u 2
(n)

2
(2)

2
(1)

                                     (7) 

For an integer h, which must satisfy n h   n/2  , the LTS estimator is defined by : 

      (b) u  min arg  b
h

1t

2
(t)RbLTS p 




              (8)   

The constant h is called a trimming constant.  Obviously  bLTS ignores n-h observations, 

but it is not known before the computation, which observations should be discarded.  Their 

deletion is defined in an implicit way.  Thus, the estimator can be expressed using an 

indicator function as : 

(b)]u(b)I[u (b). u  min arg  b 2
(h)

2
t

n

1t

2
(t)RbLTS p  




.  (9) 

In practice, the LTS estimate can be computed by some statistical Packages, for 

example S-plus. 

The results of the LTS depend heavily on the choice of h.  For h=n, the LTS coincides with 

the classical least squares regression, which has asymptotic breakdown point 0  *  .  On the 

other hand, the  LTS attains its maximum breakdown point for  

] 
2

1p
 [  ] 

2

n
 [  h


  ,                                                            (10) 

where [a] stands for the integer part of a.  In this situation, the asymptotic breakdown point 

attains its maximum possible value, which is 50 %. 

The value of h should reflect the level of contaminancy of the data.  It can be recommended 

to fit the LTS for every value of  h between ] 
2

1p
 [  ] 

2

n
 [  h


  and n.  Let us denote the 

proper value of h by 
*h .  Values of  LTSb  are similar to each other for such different values 

of h, which are less or equal to 
*h .  The same property is true for estimator of 

2 . 

However, this stability breaks when h exceeds 
*h .  This is the situation when the ratio of 

discarded observations h)/n(n  is lower than contaminacy level.  Of course such search of 

*h is rather subjective and requires also some experience. 
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Reweighted Least Squares: 

The reweighted least squares regression (RLS) has been proposed by Rousseeuw and Leroy 

(1987). They recommended it as a one-step improvement of the LTS, which keeps a high 

breakdown point and attains a higher efficiency.  The method itself is a classical weighted 

least squares regression, where the weights are assigned to observations according to the 

results of the least trimmed squares fit.  We will describe the RLS regression and consider its 

properties. 

Let us denote residuals of the LTS regression by 
*
n

*
1 u , ... , u .   Rousseeuw and Leroy (1987) 

proposed to define the weights by means of an indicator function as : 

 













 2.5  

u
 I  w

*

*
t

t


  ,      (11) 

where * is the robust estimate of the standard deviation of disturbances in the model (1).  

There are also other ways used to define the weights.   In general, the weight matrix 

) w, ... , (w diag W n1  must be specified before computing the following RLS estimator. 

WYX WX)(X  b '1-'
RLS       (12) 

This formula for the classical weighted least squared is equivalent with : 

(b)u   W min  rga  b 2
t

n

1t
tbRLS pRb




     (13) 

The idea of Rousseeuw and leroy was to use the RLS always after an LTS fit.  Their 

approach was to fit the LTS with ] 
2

1p
 [  ] 

2

n
 [  h


  , which is not (in general) efficient.  

The next step, which is the RLS , takes into account observations with positive weights.  Let 

us say there are RLSh such observations.  Rousseeuw and leroy would carry out least 

squares with these fixed RLSh observations.  On the other hand, our approach described 

above searches for a suitable h and then the LTS looks for a minimal value across all possible 

h- trimming observations.  Therefore our approach (the LTS with a proper value of the 

trimming constant) is more efficient than the RLS and we do not recommend to use the RLS. 

Least Weighted Squares : 
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We present very briefly the least weighted squares regression (LWS), which is proposed a 

robust method with high breakdown point.  Its properties are still under research, as well as 

the question of choosing optimal weights; see Yohai (1987) for details.  The definition of the 

estimator  

  
 




n

1t

n

1i

2
(t)

2
i

2
itRbLWS (b)]u(b)(b)I[uu   wargminb p          (14) 

requires a specification of weights n21  w, ... , w, w , which have to be positive and satisfy 





n

1t
t 1   w .  The formula (14) can be transformed to: 

 
 




n

1i

n

1t

2
(t)

2
it

2
iRbLWS (b)]u(b)I[uw  (b)u  argminb p ,  (15) 

which can be denoted as : 







n

1i

2
(i)tRbLWS  (b)uw~  argminb p .     (16) 

One of weights n1 w~ , ...  , w~ is assigned to each observation, but after some permutation, 

which is not known before the computation . 

Obviously, the least trimmed squares (as well as the least squares) is a special case of least 

weighted squares. 

Autocorrelated Residuals of LTS Regression: 

Although robust regression methods usually serve as diagnostic tools for ordinary least 

squares, they themselves need to have diagnostic tools and modifications.  One of such tools, 

which is still to be constructed, is a test of autocorrelation of LTS and LWS residuals. 

Let us recall the notation 
*
n

*
1 u , ... , u  for the residuals of the LTS regression.  It turns out 

that the following Durbin-Watson test statistic 








n

1t

2*
t

n

2t

2*
1-t

*
t

u 

)u - (u 

  d   ,    (17) 
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has the same asymptotic behaviour as the classical test statistic computed with the lest 

squares residuals.  Moreover, the Durbin-Watson test can be used in the same way as for the 

least squares for a moderate sample size, especially when there is only a small dimention of 

the model (p is small). 

If the trimming constant h is properly selected, then the n-h observations ignored in equation 

(8) are outliers and their residuals differ a lot from residuals corresponding to " good " 

observations.  Why to use them for calculation, such as for the Durbin-Watson test ? 

 

On the other hand , a complete omission of outlier would be wrong, because the data from a 

time series.  Deletion of an observation and shifting all the remaining observations a time unit 

ahead makes impossible to study the autocorrelation structure of the original time series. 

The following idea may be better.  An outlier detected by the LTS can be replaced by such 

value, which corresponds to the behaviour of the majority of the data (non-outliers).  In other 

words, the time series of LTS residuals can be smoothened to replace outliers while keeping 

the " good " data.  Then the Durbin-Watson test, estimation of  and the Cochrane-Orcutt 

transformation can be carried out.  The principal idea, how to replace the outlying residuals, 

is still under research. 

 

For the LWS, the situation is more complicated.  A modification of  Durbin-Watson test 

statistic should take into account different weights of individual observations. 

Illustrative Example : 

In this section, we demonstrate the practical use of the Durbin-Watson test and the Cochrane-

Orcutt transformation on an example with real data.  The package S-Plus was used for the 

calculations.  We also calculate the (exact) value of the LTS estimate.  Table (1) lists values 

of real gross domestic product (GDP) and real gross private domestic investment (INVEST) 

in the United States in the years from 1986 to 2007.  Both variables are expressed in billions 

of dollars.  The data are copied from the website www.Stls.frb.org/fred, and originally come 

from the U.S/  Department of Commerce . 

Table (1) : Investment data . 

Year 1986 1987 1988 1989 1990 1991 1992 1993 

GDP 4900.9 5021 4919.3 5132.3 5505.2 5717.1 5912.4 6113.3 

http://www.ea-journals.org/
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INVEST 655.3 715.6 615.2 673.7 871.5 863.4 857.7 879.3 

Year 1994 1995 1996 1997 1998 1999 2000 2001 

GDP 6368.4 6591.8 6707.9 6676.4 6880 7062.6 7347.7 7543.8 

INVEST 902.8 936.5 907.3 829.5 899.8 977.9 1107 1140.6 

Year 2002 2003 2004 2005 2006 2007   

GDP 7813.2 8159.5 8508.9 8856.5 9224 9333.8   

INVEST 1242.7 1393.3 1558 1660.1 1772.9 1630.8   

Because the values are not nominal, but adjusted for deviation of money, the following model 

   ,e .GDPβ   βINVEST tt1ot      n , ... , 1  t                (18) 

has its reasonable economic interpretation; see Greene (1993) for a similar investment 

equation. Table (2) presents two iterations of the Cochrane-Orcutt transformation with results 

of the ordinary least squares (OLS), and least trimmed squares (LTS) should be self-

explaining. 

Table (2) : Results of the example . 

 
OLS 

Cochrane-Orcutt first 

iteration 

Cochrane –Orcutt 

second iteration 
LTS 

Intercept - 582 - 980.5 - 962.4 -371.4 

GDP 0.239 0.282 0.286 0.203 

ρ̂  0.779 0.790 0.792 0.807 

2R  
92.1 % 74.3 % 73.4 % 91.0 % 

 

By the original model (18), the Durbin-Watson test (with OLS residuals) is significant, 

because 1.24(0.05)d0.418d L  . In the transformed model, the value 1.31d   lies 

in the inconclusive region, 1.42(0.05)d d1.22 )05.0(d uL  . Thus, we believe that 

the autocorrelation has been (almost) removed and the results are satisfactory. 

 

This example demonstrates the importance of using the Cochrane-Orcutt transformation. Not 

only there is a big difference in the estimates of the parameters, but also the true value of the 

coefficient of determination 
2R (about 73%) is substantially over-estimated in the original 

http://www.ea-journals.org/
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model (18). It is also worth noting that there is only a slight difference between results of the 

first and second iteration of the Cochrane-Orcutt transformation.  This does not hold for the 

intercept, which is well known to be very sensitive to slight changes of the slope.  By the 

way, we did not forget to divide the estimate of the intercept in the transformed models by 

ρ̂1 . 

 

A (subjective) search for a proper value of the trimming constant for the LTS hints to choose 

19h  .  It turns out that the years( 2004),( 2005) and (2006) are ignored.  Just for 

comparison, the RLS approach (not subjective at all) gives exactly the same results.  The 

value of ρ̂  for the LTS is influenced by outliers, as well the Durbin-Watson statistic 

computed with the LTS residuals, which equals 338.0d  .  Both these values do not have 

an interpretation and it is not known yet how to robustify them in this context. 

 

CONCLUSION  

In this paper, we aimed to explore the issue of whether one should use OLS residuals or 

residuals from a robust regression method (TLS) as a basis for autocorrelated test .  We 

conjecture how to robustify the Durbin-Watson test for residuals of the least trimmed squares 

regression, in order to detect the autocorrelation problem. 
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