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ABSTRACT: This study proposed a multivariate weighting system, which allows for 

the computation of both base and current year weights from price datasets 

conveniently. The proposed multivariate weighting system adopts a factor analysis 

methodology aimed at mitigating the widely reported weight and formula biases 

associated with CPI formulation, with an advantage of retaining variability in each 

price variable in the final index. The precisions of the expenditure-based weight 

(current weighting system) and that of the multivariate weighting system were assessed. 

It was found that the proposed weighting system performed better in terms of the 

proportion of indices falling within the ideal range. This result was consistent for 1000 

bootstrap samples generated from 10 different multivariate data samples simulated for 

this purpose. The paper recommends the multivariate weighting system, because it is 

easy to implement and cost effective, as an alternative for the expenditure-based 

weighting system noted in literature for biases.  

KEYWORDS: index numbers; consumer price index; multivariate statistics; classical 

factor analysis 
 

INTRODUCTION 

 

Consumer Price Index (CPI) measures changes in prices of goods and services and it is 

used in the determination of inflation and living conditions in a country. The CPI is an 

index number primarily used to measure changes in prices of some set of goods 

consumed by households in a quest to satisfy their needs and wants (International 

Labour Office & Turvey, 2004). In the 1980s, the well-known Laspeyres’ and 

Paasche’s indices were proposed.  In the composition of these indices, data on prices, 

quantity purchases, and expenditure incurred by consumers are required. Then from the 

quantities and expenditures, weights attributable to items are determined. To capture 

the dynamics of price changes over a period, a superlative index (in which weights 

capture the dynamics of price changes over a period) is the ideal. However, this is often 

difficult to compute in real-time due to the fact that data on current quantity and 

expenditure by consumers are not readily available at the time of index formulation. 

This challenge, results in the popular weight and formula biases associated with CPI 

computations worldwide. 
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This paper seeks to propose a multivariate measure that can be used to formulate an 

alternative weighting system using solely price data, so that, the variability explained 

in each price variable would be retained in the final index. Essentially, the utilisation of 

this weighting system curtails the existence of the popular weight and formula biases 

associated with CPI formulation.  

 

Subsequent sections of the paper are organised under the following headings: 

Background of the Study, Methodology, Results, Discussions, Conclusions and 

Recommendations.  

 

Theoretical Underpinning 

Four popular index formulas are known from literature: The “modified” Laspeyres’ 

index, whose weights are obtained from base year expenditure data: 

𝐶𝑃𝐼𝐿 =
∑ 𝑤𝑖𝑏 (

𝑃𝑖𝑐
𝑃𝑖𝑏
)𝑝

𝑖=1

∑ 𝑤𝑖𝑏
𝑝
𝑖=1

;                                                                           (1) 

the “modified” Paasche’s index, with weights computed from current year expenditure 

data: 

𝐶𝑃𝐼𝑃 =
∑ 𝑤𝑖𝑐 (

𝑃𝑖𝑐
𝑃𝑖𝑏
)𝑝

𝑖=1

∑ 𝑤𝑖𝑐
𝑝
𝑖=1

;                                                                           (2) 

then the Fisher’s Ideal superlative index, a geometric mean of the Laspeyres’ and the 

Paasche’s indices: 

𝐶𝑃𝐼𝐹 = (
∑ 𝑤𝑖𝑏 (

𝑃𝑖𝑐
𝑃𝑖𝑏
)𝑝

𝑖=1

∑ 𝑤𝑖𝑏
𝑝
𝑖=1

)

1/2

×(
∑ 𝑤𝑖𝑐 (

𝑃𝑖𝑐
𝑃𝑖𝑏
)𝑝

𝑖=1

∑ 𝑤𝑖𝑐
𝑝
𝑖=1

)

1
2

                                                 (3) 

and  the Drobish-Bowley’s index, another superlative index, which is an arithmetic 

mean of the Laspeyres’ and the Paasche’s indices: 

𝐶𝑃𝐼𝐷𝐵 =

(
∑ 𝑤𝑖𝑏 (

𝑃𝑖𝑐
𝑃𝑖𝑏
)𝑝

𝑖=1

∑ 𝑤𝑖𝑏
𝑝
𝑖=1

)+ (
∑ 𝑤𝑖𝑐 (

𝑃𝑖𝑐
𝑃𝑖𝑏
)𝑝

𝑖=1

∑ 𝑤𝑖𝑐
𝑝
𝑖=1

)

2
;                                                       (4) 

where 

𝑃𝑖𝐶 is the price of the 𝑖𝑡ℎ item in the current year, 

𝑃𝑖𝐵 is the price of the 𝑖𝑡ℎ item in the base year, 

𝑤𝑖𝐶 weight of the 𝑖𝑡ℎ item in the current year, 

𝑤𝑖𝐵 weight of the 𝑖𝑡ℎitem in the base year. 

p number of items in the basket.  

 

The debate on the biases in CPI  was mostly due to biases in the formulation of weights 

for use in the above formulas (Boskin et al., 1996; Malik et al., 2014). The current 

weighting system is expenditure-based, computed once in a base year as: 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.3, pp.1-19, October 2020 

        Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                Online ISSN: 2053-2210 (Online) 

3 
 

𝑤𝑖𝑏 =
𝐸𝑖𝑏

∑ 𝐸𝑖𝑏
𝑝
𝑖=1

,                                                                                           (5) 

Or as:  

𝑤𝑖𝑏 = (
𝐸𝑖𝑏

∑ 𝐸𝑖𝑏
𝑝
𝑖=1

)100.                                                                              (6) 

where 𝐸𝑖𝑏 is the expenditure made by households on the 𝑖𝑡ℎ item. 

 

The concern over the decades of debate has been the fact that, 𝐸𝑖𝑏 is a product of 

household expenditure survey (HES) for which reason  𝑤𝑖𝑏 is computed once in several 

years. Simply, 𝑤𝑖𝑏 may not be representative over a period. Again, the huge cost 

involved in conducting HES makes it even more prohibitive to carry out HES yearly 

(International Labour Office, & Turvey, 2004; Srivastava & Srivastava, 2003). 

Essentially, the assumption that consumer taste and standard of living remains the same 

over a period cannot be realistic in certain price environments (Malik et al., 2014; 

Milana, 2009). To this end, the popular weight and formula biases created in the 

formulation of CPI is the root-cause of the CPI problem (Malik et al., 2014) and for 

which the Laspeyres’ price index is deemed unrepresentative (Khalid & Asghar, 2010).  

The ideal situation is to have superlative indices (Afriat, 2005, 1977; Hicks, 1956; 

Konus, 1924; Samuelson & Swamy, 1974; Samuelson, 1974; Swamy, 1984), which are 

composed of and bounded by the Laspeyres’ and Paasche’s indices. Clearly, the issue 

about the unrepresentativeness of the current CPI weighting system  (Bryan & 

Cecchetti, 1993; Cecchetti, 1996; Clark, 1999; Reed & Rippy, 2012) had gained much 

attention in literature.  

 

In view of these challenges, CPI is computed in the USA for urban dwellers only 

(McCully et al., 2007) and the personal consumption expenditures price index (PCEPI) 

is computed and reported as well (Khalid & Asghar, 2010; McCully et al., 2007). The 

PCEPI computes weights from sales data taken from shops, supermarkets, malls, etc. 

PCEPI weighting system suggests that the system can only apply when data on sales 

are taken in every location. Therefore, in a developing world like Ghana for example, 

its implementation may not be possible, at least for now. In this respect, an alternative 

weighting system, which is comparatively cheaper and makes it possible to compute 

weights for both base and current year price data, is suggested in this paper. 

 

In the search for an alternative, it is important to recognise that the essence of weighting 

in indexing is always linked to variability (Hill, 2004; International Labour Office, & 

Turvey, 2004; Sellwood, 1989; Spiegel & Stephens, 2011; Srivastava & Srivastava, 

2003) and that price datasets are usually multivariate in nature. However, current 

weighting system uses univariate approach only, denying the analysis of interaction 

among variables and the only time a multivariate method was applied to price data was 

by (Mettle et al., 2014), but that was not about weighting. Thus, weights can be obtained 

for price variables by subjecting the same price data to factor analysis and generate 

values that serve the same purpose as weights. Once a correlation matrix: 
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𝑹 = (

1 𝑟12 … 𝑟1𝑝
𝑟21 1 … 𝑟2𝑝
⋮
𝑟𝑝1

⋮
𝑟𝑝2

⋱
…

⋮
1

),                                                                             (7) 

can be formulated for some price variables, 𝑋1, 𝑋2, … , 𝑋𝑝, a spectral decomposition of 

R allows for the variability accounted in each variable to be estimated. Thus R reveals 

factors common to all variables in the data that help in estimating a certain percentage 

of variability attributable to each variable. Essentially, factor analysis can produce 

weights. Detail methods and procedures are provided in the next section. 

 

METHODOLOGY 

 

The methodology involved in factor analysis can be utilised to build CPI weighting 

system that can serve as an alternative to the current system. According to literature on 

multivariate statistics, for example, in  Johnson & Wichern (2007); Rencher (2002); 

and Timm (2002), if the variables: 𝑋1, 𝑋2, … , 𝑋𝑝 account for the maximum variance in 

a dataset, then some 𝑚 < 𝑝 constructs will account for the inter-correlations among the 

original variables. So that, the factor model suggests that 𝑋𝑠 are linearly dependent 

upon a few unobservable constructs (also called factors), 𝐹1, 𝐹2, … , 𝐹𝑚, common to all 

variables; and additional sources of variation, 𝜖1, 𝜖2, … , 𝜖𝑝, specific to the original 

variables in the model in the manner: 

(

𝑋1 − 𝜇1
𝑋2 − 𝜇2
⋮

𝑋𝑝 − 𝜇𝑝

) =

(

 

𝑙11 𝑙21 … 𝑙𝑝1

𝑙12 𝑙22 … 𝑙𝑝2
⋮
𝑙1𝑝

⋮
𝑙2𝑝

⋱
…

⋮
𝑙𝑝𝑚)

 (

𝐹1
𝐹2
⋮
𝐹𝑚

)+ (

𝜖1
𝜖2
⋮
𝜖𝑝

),                           (8) 

called the classical factor analysis model, where 𝜇𝑖 are the population means of the 

original variables and 𝑙𝑖𝑗 are simply, correlations between the original variables and the 

extracted factors, also called factor loadings. Frequently, (8) can be re-rewritten as: 

𝑿 = 𝝁 + 𝐋𝑭 + 𝝐,                                                                                 (9) 
under the assumptions: (1)  𝑭~(𝟎, 𝐈𝑚) and are uncorrelated; (2)  𝝐~(𝟎,𝚿), where 𝚿 =

𝑑𝑖𝑎𝑔(𝜓1, 𝜓2, … , 𝜓𝑝), diagonal matrix of specific variances and (3) for any pairs 𝑗 and 

𝑘, 𝜖𝑗 and 𝐹𝑘 are independent. Subsequently, 𝐶𝑜𝑣(𝝐𝑭) = 𝐸(𝝐𝑭𝑇) = 𝟎. From here, we 

can formulate the covariance structure of 𝑿 as: 

𝑉𝑎𝑟(𝑿) = 𝐸[(𝑿 − 𝝁)(𝑿 − 𝝁)′] 
                       =   𝐸[(𝐋𝑭 + 𝝐)(𝐋𝑭 + 𝝐)′]   

                                                            =   𝐸[𝐋𝑭𝑭′𝐋′] + 𝐸[𝐋𝑭𝝐′] + 𝐸[𝝐𝑭′𝐋′] + 𝐸[𝝐𝝐′] 
                                                           =  𝐋𝐸[𝑭𝑭′]𝐋′ + 𝐋𝐸[𝑭𝝐′] + 𝐸[𝝐𝑭′]𝐋′ + 𝐸[𝝐𝝐′] 

∴ 𝚺 =  𝐋𝐋′ +𝚿.                                                                                     (10) 
So that, the covariance between 𝑿 and 𝑭 takes the form: 

𝐶𝑜𝑣(𝑿, 𝑭) = 𝐸[(𝑿 − 𝝁)𝑭′] 
                      = 𝐸[(𝐋𝑭 + 𝝐)𝑭′] 

                                     = 𝐸[𝐋𝑭𝑭′] + 𝐸[𝝐𝑭′] = 𝐋, 
implying  

𝐶𝑜𝑣(𝑋𝑖, 𝑓𝑗) = 𝑙𝑖𝑗 .                                                                               (11) 
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Also from (10), and for any number of variables, 𝑝, we have 

(

 

𝜎1
2 𝜎12 … 𝜎1𝑝

𝜎21 𝜎2
2 … 𝜎2𝑝

⋮
𝜎𝑝1

⋮
𝜎𝑝2

⋱
…

⋮
𝜎𝑝
2
)

 = 

(

𝑙11 𝑙12 … 𝑙1𝑚
𝑙21 𝑙22 … 𝑙2𝑚
⋮
𝑙𝑝1

⋮
𝑙𝑝2

⋱
…

⋮
𝑙𝑝𝑚

)

(

 

𝑙11 𝑙21 … 𝑙𝑝1

𝑙12 𝑙22 … 𝑙𝑝2
⋮
𝑙1𝑚

⋮
𝑙2𝑚

⋱
…

⋮
𝑙𝑝𝑚)

 +

(

 

𝜓1
2 0 … 0

0 𝜓2
2 … 0

⋮
0

⋮
…

  ⋱
  …

⋮
𝜓𝑝
2
)

 . 

So that, performing matrix multiplication operation,  

(

 

𝜎1
2 𝜎12 … 𝜎1𝑝

𝜎21 𝜎2
2 … 𝜎2𝑝

⋮
𝜎𝑝1

⋮
𝜎𝑝2

⋱
…

⋮
𝜎𝑝
2
)

 

=

(

 
 
 
 
 
 
 
∑𝑙1𝑗

2

𝑚

𝑗=1

∑𝑙1𝑘𝑙2𝑘

𝑚

𝑘=1

… ∑ 𝑙1𝑘𝑙𝑝𝑘

𝑚

𝑘=1

∑𝑙2𝑘𝑙1𝑘

𝑚

𝑘=1

∑𝑙2𝑗
2

𝑚

𝑗=1

 … ∑ 𝑙2𝑘𝑙𝑝𝑘

𝑚

𝑘=1

⋮

∑ 𝑙𝑝𝑘𝑙1𝑘

𝑚

𝑘=1

⋮

∑ 𝑙𝑝𝑘𝑙2𝑘

𝑚

𝑘=1

⋱
…

⋮

∑𝑙𝑝𝑗
2

𝑚

𝑗=1 )

 
 
 
 
 
 
 

+

(

 

𝜓1
2 0 … 0

0 𝜓2
2 … 0

⋮
0

⋮
…

   ⋱
   …

⋮
𝜓𝑝
2
)

 . 

⇒

(

 

𝜎1
2 𝜎12 … 𝜎1𝑝

𝜎21 𝜎2
2 … 𝜎2𝑝

⋮
𝜎𝑝1

⋮
𝜎𝑝2

⋱
…

⋮
𝜎𝑝
2
)

 =

(

 
 
 
 
 
 
 
∑𝑙1𝑗

2

𝑚

𝑗=1

+ 𝜓1
2 ∑𝑙1𝑘𝑙2𝑘

𝑚

𝑘=1

… ∑𝑙1𝑘𝑙𝑝𝑘

𝑚

𝑘=1

∑𝑙2𝑘𝑙1𝑘

𝑚

𝑘=1

∑𝑙2𝑗
2

𝑚

𝑗=1

+ 𝜓2
2 … ∑𝑙2𝑘𝑙𝑝𝑘

𝑚

𝑘=1

⋮

∑ 𝑙𝑝𝑘𝑙1𝑘

𝑚

𝑘=1

⋮

∑ 𝑙𝑝𝑘𝑙2𝑘

𝑚

𝑘=1

    ⋱
    …

⋮

∑𝑙𝑝𝑗
2

𝑚

𝑗=1

+ 𝜓𝑝
2

)

 
 
 
 
 
 
 

. 

Equating the terms yield: 

𝜎𝑖
2 =∑𝑙𝑖𝑗

2

𝑚

𝑗=1

+ 𝜓𝑖
2 =∑𝑙𝑖𝑗

2

𝑚

𝑗=1

+ 𝑉𝑎𝑟(𝜀𝑖), 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑝                (12) 

and, 
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𝜎𝑖𝑗 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = ∑ 𝑙𝑖𝑘𝑙𝑗𝑘

𝑚

𝑘=1

, 𝑓𝑜𝑟 𝑖, 𝑗 = 1,2, … , 𝑝.                        (13) 

Note that from (10), the parameters of interest are L and 𝚿. To estimate these, principal 

component is one of the methods frequently used. The principal component method of 

factor estimation allows all variables to have an initial communality of one (1) and 

seeks to estimate the final communality by spectral decomposition of the correlation 

matrix, (7). A spectral decomposition expresses the correlation matrix in terms of its 

eigenvalues and eigenvectors. Assume the eigenvalues of (7) are such that: 𝜆1 > 𝜆2 >
⋯ > 𝜆𝑝; and the corresponding set of eigenvectors: 𝒆1, 𝒆2, … , 𝒆𝑝; then we can rewrite 

R as: 

𝐑 = 𝜆1𝐞1𝐞1
′ + 𝜆2𝐞2𝐞2

′+⋯+ 𝜆𝑝𝐞p𝐞p
′ , 

so that 

𝐑 = (𝒆1√𝜆1, 𝒆2√𝜆2, … , 𝒆𝑝√𝜆𝑝)

(

  
 

𝒆1
′√𝜆1

𝒆2
′√𝜆2
⋮

𝒆𝑝
′ √𝜆𝑝)

  
 
.                                                     (14)  

Clearly, (14) is in the form of (10) in the case where all 𝑝 variables are extracted. When 

that happens, (10) reduces to 𝐋𝐋′ implying that, 𝐶𝑜𝑣(𝑋𝑖, 𝑓𝑗) = 𝒆𝑖√𝜆𝑖, called the 

unrotated factor matrix. Even though the unrotated initial factor loadings have the 

ability to reproduce the standardized covariance matrix, it does pose interpretability 

problems (Rencher, 2002). So, to obtain a simple factor structure that provides a most 

meaningful and interpretable set of factors and help to reduce the chances of having 

bipolar factors, varimax rotation is adopted (Conway & HufFStutt, 2003; Reimann et 

al., 2002; Rencher, 2002). Let T be an 𝑚 ×𝑚 orthogonal transformation matrix such 

that 𝐓𝐓′ = 𝐓′𝐓 = 𝐈. Then the product, 𝐋𝐓 is a rotated factor loading matrix of L under 

T. Therefore, we can define a new rotated matrix, 𝐋∗ = 𝐋𝐓, such that from (10), 𝚺 =
𝐋𝐓𝐓′𝐋′ +𝚿 = (𝐋𝐓)(𝐋𝐓)′ +𝚿. 

So that, 

𝚺 = 𝐋∗𝐋∗′ +𝚿.                                                                                     (15) 
Thus, (15) is the final rotated factor model. At this point, it serves intuitive purpose to 

determine the amount of variability in each variable accounted for by the 𝑚 extracted 

factors, which is the communality.  This variability is part of (12). Equation (12) breaks 

down the total variance in a variable to comprise the communality and the specific 

variance:  𝜎𝑖
2 = ∑ 𝑙𝑖𝑗

2𝑚
𝑗=1 + 𝑉𝑎𝑟(𝜀𝑖), hence the 𝑖𝑡ℎ communality: 

ℎ𝑖
2 = 𝑙𝑖1

2 + 𝑙𝑖2
2 +⋯+ 𝑙𝑖𝑚

2 .                                                                         (16) 
Equation (16) is the communality obtained for a classical factor analysis; it accounts 

for the variability in each variable and hence fit to be used as weights on variables. 

When used as weights,  

 

𝑤𝑖
∗ =

ℎ𝑖
2

∑ ℎ𝑖
2𝑝

𝑖=1

                                                                                      (17) 
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its additional advantage is that it retains the variability in each price variable in the final 

index so that the final index fairly represents variability in each price item. This is the 

proposed multivariate weighting system, 𝑤𝑖
∗, which can be found for both base and 

current year datasets in real time, once price datasets are obtained. 

 

However, before arriving at (16), two important issues need to be cleared. The first is 

the criteria for retaining factors. A more popular method for factor retention is the 

eigenvalue-greater-than-one rule. However, a relatively recent method: parallel 

analysis, is a superior and robust alternative (Basto & Pereira, 2012; Beaujean, 2013; 

Ledesma & Valero-Mora, 2007). For this reason, both methods were employed in this 

study and results compared to ascertain the effect of different factor retention method 

when using the multivariate weighting system proposed in this study. The second has 

to do with why the choice of principal component method of factor estimation over 

other methods of factor estimation. Clearly, the essence of weighting in indexing is to 

incorporate variability of variables in the final index. So, to use communality as 

weights, a good amount of common variance in the correlation matrix ought to have 

been account for. That is exactly what the principal component method helps to achieve. 

For a large set of price variables, the eigenvalues of the correlation matrix partitions the 

total common variance. So that, the variable(s) with eigenvalues greater than one would 

explain maximum variance in the correlation matrix. Therefore, for 𝑚 extracted factors, 

percentage explained variance (PEV): 

𝑃𝐸𝑉 = (
𝜆1 + 𝜆2 +⋯+ 𝜆𝑚

𝑝
) 100,                                                                  (18) 

would mostly be maximum. Again, it is only the principal component method of factor 

estimation that analyses the correlation matrix, other methods perform analysis with a 

reduced correlation matrix. In addition, for relatively large number of variables (which 

may be the case mostly in price indexing), principal component analysis is an 

approximation of exploratory factor analysis (Gorsuch, 1986; Lorenzo-Seva, 2013; 

Snook & Gorsuch, 1989; Thompson, 1992). By this, it should be the case that (18) 

would always account for the maximum common variance in the dataset. Thus, the 

classical multivariate weighting system for consumer price index is proposed as in (17).  

 

To test the proposed method and compare results to the current method, both simulation 

and empirical studies were carried out. In the simulation studies pseudo price and 

weight datasets are required. In this regard, while price values were assumed to follow 

normality, weights datasets were made to follow the uniform distribution with end 

points, 0 and 1, since current weights are within these values. The different conditions 

considered in the simulation studies are: (1) to investigate the effects of the two 

weighting systems for different sets of variables; (2) to investigate the effects of the two 

weighting systems for different sample sizes and (3) to investigate the effects of the two 

weighting systems for both high and low KMO values. To investigate the different 

effects of the two weighting systems, the multivariate location and scatter for the 

following price datasets were used to simulate pseudo price datasets: (1) a 19-variable 

datasets from the Ghana Statistical Service (GSS) and (2) a 55-variables datasets 

obtained from the internet (specifically, www.numbeo.com), with simulated weights 

values as described earlier. For each set, different sample sizes were simulated aimed 

http://www.numbeo.com/
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at investigating the power of the Bartlett’s sphericity test and KMO. Literature, for 

example in Budaev (2010); Dziuban et al. (1979); Knapp  & Swoyer (1967); and Wilson 

& Martin (1983) proposed sample sizes of 𝑁 = 50, 100, 250, 500 and 1000 in studying 

the behaviour of Bartlett’s sphericity test and KMO, which are the two key tests in 

performing factor analysis that satisfy the assumptions stated earlier.  

 

For the empirical study, two immediate points in time where HES was conducted in a 

country are needed. Accordingly, 2002 and 2012 data on Household Expenditure 

Survey (HES) in Ghana, produced by the Ghana Statistical Service (GSS), were used 

as base and current years respectively. Average prices were then computed for each 

region for a year, amounting to 120 cases each, since there were 10 regions in Ghana at 

the time of carrying out this study. Therefore, the maximum number of price variables 

required for factor analysis in this case is 24. Twenty-four price items were therefore 

randomly selected from the basket of 267 items; and out of the 24, nineteen (19) items 

were found to be common for both 2002 and 2012. Table 1 presents the selected items 

together with their rescaled expenditure-based weights as obtained from GSS.  

 

Table 1: Empirical Price Data Variables with Their Corresponding Weights  

   

Expenditure-Based 

Weights 

S/N 
Random 

Number 

Item Name and 

Notation  
2002 2012 

1 26 X1=Snails 5.42 9.10 

2 90 X2=Dark-Beer  2.97 2.69 

3 234 X3=Tuition Fees 2.13 7.32 

4 31 X4=Tuna  13.65 9.10 

5 129 X5=Women Sandals 5.02 2.89 

6 200 X6=Wheel Alignment  4.13 0.30 

7 179 X7= ATC Drug 5.77 2.88 

8 121 X8=Handkerchief 5.02 0.25 

9 43 X9=Coconut (fresh) 2.83 3.41 

10 34 X10=Evaporated Milk  2.25 3.44 

11 205 X11=Taxi Fare 4.13 7.34 

12 13 X12=Sugar Bread 5.32 6.77 

13 155 X13=Refrigerator 10.43 0.74 

14 56 X14=Tomatoes (fresh) 5.53 9.29 

15 10 X15=Cassava Dough 5.53 6.77 

16 252 X16=Toothpaste 4.00 4.97 

17 2 X17= Imported Rice 5.32 6.77 

18 102 X18=T-shirt 5.02 6.68 

19 52 X19=Garden-eggs 5.53 9.29 

Source: Ghana Statistical Service (GSS) 

 

The procedures for data analysis are the same for both simulation and empirical studies: 

(i) For each sample price data, made up of both base and current year datasets, 
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multivariate weights are determined by the classical factor analysis method; (ii) Price 

relativity data is found by dividing current year prices with corresponding base year 

prices; (iii) Expenditure-based weights are those collected from GSS or their pseudo 

values, in the case of simulation studies; (iv) The two set of weights (multivariate and 

expenditure-based weights) are then substituted into the standard index formulas 

considered for this study, which are functions of the price relativity data; (v) Procedures 

(i) to (iv) are repeated for one thousand 1000 bootstrap samples; (vi) Then the 

proportion of all 1000 indices that fall within expenditure-based Laspeyres’ index and 

expenditure-based Paasche’s index (the range believed to contain the ideal index) are 

determined. Standard errors of bootstrap estimates for the two weighting systems were 

also compared. These procedures were carried out for all different conditions and 

different datasets for both empirical and simulation studies. Detail discussions on 

procedures (v) and (vi) are presented next.  

 

Ordinarily, a best and efficient estimator is one with lower standard error. However, 

because the distribution of indices by the two set of weighting systems are not known, 

the theoretical formulas for computing standard error in this case cannot not be 

determined. Therefore, bootstrapping would be the appropriate method to estimate the 

standard errors for comparison.  In this case, the bootstrap algorithm for estimating the 

standard error of an estimator would draw 1000 samples with replacement from the 

original sample data matrix, 𝑋𝑖𝑗, 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑝 with each data case having 

the same probability, 
1

𝑛
, of being drawn; so that, each sampled data matrix is denoted 

as, 𝑋(𝑖𝑗)𝑘
∗ , for all 𝑘 = 1,2, … ,1000 re-samples. In general, if  𝜃 is an unbiased estimator 

for a given data population, then for pairs of unbiased estimators for 𝜃, (𝜃𝑖 , 𝜃𝑗), where 

𝑖, 𝑗 = 1,2, … , 𝑘, the efficiency of 𝜃𝑖  relative to 𝜃𝑗 is the ratio: 

𝑒(𝜃𝑖 , 𝜃𝑗) =
𝑣𝑎𝑟(𝜃𝑗)

𝑣𝑎𝑟(𝜃𝑖)
.                                                                         (19 ) 

 

That is, if 𝑒(𝜃𝑖 , 𝜃𝑗) > 1 or 𝑣𝑎𝑟(𝜃𝑗) > 𝑣𝑎𝑟(𝜃𝑖), then 𝜃𝑖 is relatively more efficient than 

𝜃𝑗 . Thus (19) is important in determining the efficiency of an index estimator with 

multivariate weights and that for index estimators with expenditure-based weights. 

Now, for each bootstrap sample, 𝑋(𝑖𝑗)𝑘
∗ , eight indexes would be found: the first-four 

would be having expenditure-based weights substituted into (1), (2), (3) and (4); while 

the last-four would have multivariate weights substituted in same. So, for the 𝑡 =
1,2, … ,8 index estimators, overall mean for all cases and grand mean would be 

determined respectively for all 𝑁 bootstrap samples as: 

 𝐼(̅𝑡)𝑘
∗ =

1

𝑛
∑𝐼(𝑡)𝑖

120

𝑖=1

;     𝐼�̅�
∗∗ =

1

1000
∑ 𝐼(̅𝑡)𝑘

∗

1000

𝑘=1

.                                                   (20) 

From (20), the bootstrap estimate of variance and standard errors are respectively found 

as: 
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  �̂�(𝑏𝑠)𝑡
2 =

1

1000 − 1
∑(𝐼(̅𝑡)𝑘

∗ − 𝐼�̅�
∗∗)

2
1000

𝑘=1

;     √�̂�(𝑏𝑠)𝑡
2 .                                                         (21) 

 

In making comparisons, estimates with least standard error are relatively most efficient.  

Finally, the percentage of the 1000 bootstrap estimates that fall between the 

expenditure-weighted Laspeyres’ and Paasche’s index values would be determined too. 

This range is believed to hold superlative  or ideal indices. To do this, assume 𝑛𝑖  is the 

number of times an estimator produces grand index estimates that lie between the 

expenditure-based Laspeyres’ index, 𝐼1, and the expenditure-based Paasche’s index, 𝐼4, 

in all the 1000 bootstrap samples. Then, the percentage of times estimates fall in the 

ideal index range (%𝐿𝑃𝑟𝑎𝑛𝑔𝑒) is: 

%𝐿𝑃𝑟𝑎𝑛𝑔𝑒 =
𝑛𝑖
1000

× 100,                                                                    (22) 

where 𝑛𝑖 (𝑖 = 1 , 2 ,   .  .  .  , 8)  are the number of times the ith  index number falls 

within the ideal range.  

 

RESULTS  

 

Results are reported for both simulation and empirical studies. In this regard, outputs 

relevant for making inference are: (1) the KMO value and Bartlett’s significance value 

of each price dataset; (2) bootstrap mean estimates for both expenditure-based 

consumer price indices (ebCPI) and multivariate-based consumer price indices 

(mwCPI); (3) standard errors for both ebCPI and mwCPIs; and (4) the proportion of all 

1000 bootstrap estimates that fall within the expenditure-based Laspeyres’ index and 

expenditure-based Paasche’s index. In addition, the empirical study would sought to 

investigate if the two factor retention methods – eigenvalue-greater-than-one method 

or the parallel analysis method would produce different results. Tables 2 and 3 present 

results of the simulation study while Table 4 presents results of the empirical study. 

Subsequently, the following deductions can be made, based on the simulation results: 

(i) In all cases, standard error induced by multivariate weights is lowest, 

showing that multivariate weights are most efficient in estimating indices. 

(ii) Majority of cases (7 out of 10 representing 70%) multivariate weights 

produced indices falling within the ideal index range. 

(iii) In two out of the ten cases (20%), the two performed equally; while the rest 

10% of the cases, the expenditure-based weighting system edged-past the 

proposed weighting system.  

(iv) There is no evidence to suggest that the findings made in (i) to (iii) above 

are different for different number of variables involved in the analysis.   

(v) There is also no evidence to suggest that the findings in (i) to (iii) above are 

different for low or high KMO, or for varying sample sizes.  

 

In a nutshell, results from the simulation studies have shown that irrespective of the 

number of variables, sample size, and KMO value, index estimates produced by the 

expenditure-based weights in standard index formulas results in higher standard errors 

than those produced with the multivariate-based weights in same formulas. Also, in 
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about 90%(70%+20%) of the cases considered in this study, multivariate weighted CPIs 

mimicked or out-performed the expenditure-based CPIs in terms of proportion of 

indices falling within the ideal index range. The following deductions can be made from 

results of the empirical studies, as depicted in Table 4: 

(i) In both cases, standard errors induced by the expenditure-based weights are 

similar to those induced by multivariate weights; standard errors round up 

to same value.  

(ii) Results for multivariate-weighted CPIs via eigenvalue-greater-than-one 

method are the same for those via parallel analysis method. 

(iii) On the proportion of estimates falling within the ideal index range, 

multivariate-weighted consumer price indices out-performed the 

expenditure-based consumer price for Laspeyre’s and Paasche’s indices. 

(iv) For the superlative indices, expenditure-based consumer price index edged 

passed multivariate-weighted consumer price index slightly: the differences 

in the neighbourhood of 0.02. 

Clearly, the findings of both simulation and empirical studies appear to have set out the 

proposed multivariate weighting system as a good alternative to the current 

expenditure-based weighting system.  
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Table 2: Simulation Results of Multivariate-Weighted CPI and Expenditure-Based CPI for 𝑝 = 19 

 

Sample 

Size 

KMO (Bartlett’s sig.) 

Index 

ebCPI mwCPI 

Proportion Within Ideal 

Index Range 

Base  

Year 

Current 

Year 

Bootstrap 

Estimate 

Standard 

Error 

Bootstrap 

Estimate 

Standard 

Error ebCPI mwCPI 

50 0.6(0.00) 0.4(0.00) Laspeyre’s 6.05 0.77 5.56 0.16 0.35 0.96 

      Paasche’s 5.32 0.82 5.58 0.16 0.32 0.94 

      Fishers’ 5.67 0.57 5.56 0.15 0.47 0.95 

      Drob.Bowley 5.69 0.57 5.57 0.15 0.48 0.95 

100 0.6(0.00) 0.4(0.00) Laspeyre’s 6.24 1.84 7.65 1.17 0.43 0.57 

      Paasche’s 8.13 1.91 7.70 1.21 0.43 0.56 

      Fishers’ 6.77 1.50 7.67 1.18 0.50 0.57 

      Drob.Bowley 7.18 1.54 7.68 1.19 0.50 0.57 

250 0.6(0.00) 0.5(0.00) Laspeyre’s 7.42 0.98 6.12 0.19 0.87 1.00 

      Paasche’s 4.56 0.99 6.11 0.19 0.85 1.00 

      Fishers’ 5.78 0.70 6.11 0.19 0.97 1.00 

      Drob.Bowley 5.99 0.70 6.12 0.19 0.96 1.00 

500 0.6(0.00) 0.5(0.00) Laspeyre’s 6.88 1.08 6.73 0.41 0.06 0.18 

      Paasche’s 6.71 1.14 6.81 0.42 0.06 0.15 

      Fishers’ 6.77 0.85 6.76 0.41 0.08 0.17 

      Drob.Bowley 6.80 0.84 6.77 0.41 0.08 0.17 

1000 0.6(0.00) 0.5(0.00) Laspeyre’s 7.78 1.07 6.75 0.27 0.13 0.03 

      Paasche’s 7.29 1.09 6.73 0.26 0.15 0.02 

      Fishers’ 7.48 0.79 6.74 0.26 0.12 0.03 

      Drob.Bowley 7.54 0.78 6.74 0.26 0.14 0.03 
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Source: Statistical Analysis of Simulated Datasets; 𝑝 is the number of variables 

 

 

 

Table 3: Simulation Results of Multivariate-Weighted CPI and Expenditure-Based CPI for  𝑝 = 55 

Sample 

Size 

KMO (Bartlett’s sig.) 

Index 

ebCPI mwCPI 

Proportion Within 

Ideal Index Range 

Base  

Year 

Current  

Year 

 

Bootstrap 

Estimate 

Standard  

Error 

Bootstrap 

Estimate 

Standard  

Error ebCPI mwCPI 

50 0.5(0.00) 0.5(0.00) Laspeyre’s 14.53 3.13 12.53 1.74 0.02 0.03 

      Paasche’s 14.27 2.98 12.81 1.74 0.03 0.03 

      Fishers’ 14.34 2.48 12.67 1.73 0.03 0.03 

      Drob.Bowley 14.40 2.50 12.67 1.73 0.03 0.03 

100 0.8(0.00) 0.9(0.00) Laspeyre’s 12.00 6.74 18.42 3.40 0.84 0.99 

      Paasche’s 29.63 6.95 19.62 3.49 0.82 0.99 

      Fishers’ 16.54 5.61 19.00 3.41 0.91 0.99 

      Drob.Bowley 20.79 5.58 19.02 3.42 0.92 0.99 

250 0.9(0.00) 0.9(0.00) Laspeyre’s 17.63 2.97 13.63 1.43 0.75 0.98 

      Paasche’s 10.63 2.98 14.44 1.39 0.74 0.99 

      Fishers’ 13.06 2.39 14.02 1.38 0.86 0.99 

      Drob.Bowley 14.13 2.38 14.03 1.38 0.86 0.99 

500 0.9(0.00) 0.9(0.00) Laspeyre’s 11.60 3.52 15.61 1.70 0.54 0.88 

      Paasche’s 17.73 3.44 15.84 1.72 0.57 0.84 

      Fishers’ 13.71 2.79 15.72 1.68 0.69 0.88 

      Drob.Bowley 14.67 2.80 15.72 1.69 0.62 0.87 
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1000 0.9(0.00) 0.9(0.00) Laspeyre’s 33.77 10.94 31.37 8.94 0.003 0.004 

      Paasche’s 33.88 11.00 31.95 9.09 0.004 0.005 

      Fishers’ 31.96 9.16 31.66 9.01 0.003 0.006 

      Drob.Bowley 33.82 9.63 31.66 9.01 0.004 0.007 

Source: Statistical Analysis of Simulated Datasets; 𝑝 is the number of variables 

 

 

Table 4: Empirical Results of Multivariate-Weighted CPI and Expenditure-Based CPI  

 

Source: Statistical Analysis of Simulated Datasets

Imputed 

Data 

KMO (Bartlett’s sig.) 

Index 

ebCPI mwCPI 

Proportion Within 

Ideal Index Range 

Base  

Year 

Current  

Year 

Bootstrap 

Estimate 

Standard 

Error 

Bootstrap 

Estimate 

Standard 

Error ebCPI mwCPI 

Eigenvalue 

Method  

  

  

0.5(0.00) 0.6(0.00) Laspeyre’s 4.65 0.07 5.59 0.11 0.37 0.99 

    Paasche’s 5.81 0.09 5.71 0.11 0.50 0.93 

    Fishers’ 5.18 0.07 5.65 0.11 1.00 0.98 

    Drob.Bowley 5.23 0.07 5.65 0.11 1.00 0.98 

Parallel 

Analysis 

Method  

  

0.5(0.00) 0.6(0.00) Laspeyre’s 4.65 0.07 5.59 0.12 0.37 0.98 

    Paasche’s 5.81 0.09 5.71 0.11 0.50 0.92 

    Fishers’ 5.18 0.07 5.65 0.10 1.00 0.98 

    Drob.Bowley 5.23 0.07 5.65 0.10 1.00 0.98 
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DISCUSSIONS 

 

Ideally, discussions require comparison of results and findings of a research to other results in 

literature. However, in this research, there are no results and findings regarding the subject. 

Clearly, there are no counterpart results and findings except those of this study, since 

communality has not yet been proposed as an alternative weighting scheme for consumer price 

index formulation and there are no alternative index weighting systems proposed in literature 

either. Therefore, the focus of the discussion under this section would be to discuss the 

ramifications of results and findings on the body of knowledge in index numbers and consumer 

price indexing.  

 

Currently, there are at least four standard weighted index formulas used world-wide for 

consumer price indexing. These are: (1) Laspeyres’ index, which uses weights from base year; 

(2) Paasche’s index, which uses weights from a current year; (3) Fisher’s Ideal index, which is 

the geometric mean of Laspeyres’ and Paasche’s indices and (4) Drobish-Bowley’s index, an 

arithmetic mean of Laspeyres’ and Paasche’s indices. Weighted price indices are preferred 

because they allow for the relative importance or relevance of individual price items to be 

incorporated in the resultant index. This is why the importance of weighting in price indexing 

cannot be overemphasized in the whole essence of index numbers.   

 

This notwithstanding, the problem of index numbers and by extension consumer price index, 

has been weight and formula biases that are largely because expenditure-based weights are 

difficult or expensive to generate for both base and current years and used immediately for 

indexing. In view of this, it has become virtually impossible to formulate superlative indices, 

which are deemed to be ideal. Implicitly, the formula bias is a consequence of the weight bias. 

The implication is that if weights can be obtained for both base and current years anytime 

indices are to be composed, both problems will cease to exist.   

 

So logically, the immediate solution to both weighting and formula biases is to have an 

alternative weighting system that activates the use of both Laspeyres’ and Paasche’s indices, 

which then makes it possible to compute superlative indices like the Fisher’s Ideal and Drobish-

Bowley’s indices. This has been the main objective of this study.  

 

This study presented a multivariate weighting system as an alternative weighting system in 

index formulations. Here, it is important to state that the multivariate weighting system, which 

utilises communality to formulate weights, does not erode the essence of weighting as already 

known in literature regarding indexing, for example in Hill (2004); International Labour Office 

& Turvey (2004); Sellwood (1989); Spiegel  & Stephens  (2011) and  in Srivastava & 

Srivastava (2003). In fact, since communality measures the amount of variability in variables 

explained by some common factors, it serves the same purpose indexing with communality as 

an alternative weighting system. Essentially, communality as weights retains the explained 

variability of each variable in the resultant index. 

 

The proposed methodology was tested using simulation studies and later using real data 

collected from the Ghana Statistical Service (GSS). In both cases, results for the multivariate 

approach to weighting were compared to those of the current univariate method. In the 
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simulation studies, the new methodology was subjected to different conditions precedent in the 

conduct of factor analysis. Two different datasets recording various KMOs, ranging from low 

to high, were generated under the assumption of multivariate normality. For each set of data, 

five different sample sizes popularly known in literature for checking the behaviour of KMO 

and Bartlett’s test of sphericity, were adopted. Ultimately, the effect of multivariate weights in 

standard index numbers composed via classical factor analyses and the two factor retention 

methods, eigenvalue-greater-than-one rule and parallel analysis, were assessed.  

 

Results from the simulation studies have shown that irrespective of the number of variables, 

sample size and KMO value, index estimates produced by the expenditure-based weights in 

standard index formulas resulted in higher standard errors than those produced with the 

multivariate-based weights in same formulas. Also, in 70% of the cases considered, 

multivariate weighted CPIs clearly out-performed the expenditure-based CPIs in terms of 

proportion of indices falling within the ideal index range.  Here again, the standard errors of 

indices produced with multivariate weights were lesser than those produced with pseudo 

expenditure-based weights. Clearly, these findings appeared to have set out the proposed 

multivariate weighting system as a good alternative to the current expenditure-based weighting 

system.  

 

The empirical study was required in order to test the new theory on real data and to ascertain 

the findings in the simulation studies. To do this, there was the need to select two points in the 

past (2002 and 2012) where household expenditure data were generated in Ghana and use them 

as base and current years respectively. This is to help obtain the ideal index range in this case. 

Nineteen (19) items were included.  

 

Subsequently, results of the empirical study, after bootstrapping a thousand (1000) times for 

each set, confirmed that the two weights in standard index formulas are equally efficient and 

standard errors for bootstrap estimates were approximately the same for all cases considered. 

Again in most cases, the multivariate-weighted CPIs outperformed the expenditure-based CPIs 

in terms of indices that fell between the ideal index range. In the other few cases where the 

expenditures-based CPIs edged past the multivariate-weighted CPIs, the difference was in the 

neighbourhood of 0.02. This suggests that the multivariate-weighted CPIs do mimic 

expenditure-based weights closely in producing indices that would be deemed as ideal. In this 

regard, the multivariate-weighted consumer price index values have shown to be  consistent 

with the theory on the ideal index, as found in many literatures; for example, in Afriat (2005 

&1977); Hicks (1956); Konus (1924); Samuelson & Swamy (1974); Samuelson (1974 & 1984) 

and in Swamy (1984), since its values are closer to the Fisher’s and Drobish-Bowley’s indices.  

 

The implication is that it should be possible to generate multivariate weights conveniently from 

price data for used in the composition of CPI without having to conduct expensive household 

expenditure survey any time indices are to be composed. This will not only solve the main 

problem of index numbers, but will, also, allow for other index values to be computed in real 

time, once price data are loaded onto a platform. Essentially, the weighting system proposed in 

this study can help solve the long standing weight and formula problems associated with CPI.  

 

 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.3, pp.1-19, October 2020 

        Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                Online ISSN: 2053-2210 (Online) 

17 
 

Implication to Research and Practice 

 

1. The proposed weighting system is recommended for use in the formulation of the 

consumer price index.  

2. The proposed weighting system can also be applied in the financial sector and in 

performance indexing.  

 

CONCLUSIONS 

 

The study sought to propose a multivariate weighting system for CPI by applying classical 

factor analysis methodology to mitigate the widely reported weight and formula biases, with 

additional advantage of explaining variability in price variables. Evidently, this main objective 

was achieved. Consequently, the following conclusions and summaries can be made: 

1. Multivariate weighted CPIs recorded lesser standard errors than expenditure-based CPIs 

in the simulation studies, hence appears to be most efficient.  

2. In the practical case, standard errors of CPIs composed with the two weighting systems 

are approximately the same, suggesting that multivariate weighted system can be a good 

alternative to the expenditure-based weighting system.  

3. In 90% of all cases considered in this study, multivariate weighted CPIs mimicked or out-

performed the expenditure-based CPIs in terms of proportion of indices falling within the 

ideal index range. 

4. Again in the practical case, multivariate weighted CPIs had higher proportions of indices 

within the ideal index range than the expenditure-based CPIs. 

5. Multivariate-weighted consumer price indices for different factor retention methods are 

equally efficient. 

6. There was no evidence that the conclusion above differ for different number of variables, 

sample sizes, and KMO values.  

7. It can be asserted that the proposed method will work for all datasets since it performed 

comparably better for both the empirical and simulated datasets; hence it will be a judicious 

alternative for the current CPI weighting system. 

 

Future Research 

The methodology of adopted in this paper made use of classical factor analysis under the 

assumption that the price data is normally distributed. However, this assumption of normality 

may not always hold for all multivariate price datasets. In such situations, the robust 

counterpart of factor analysis would be appropriate for the generating weights for the price 

variables. A future research will focus on this aspect.  
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