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ABSTRACT: The use of classification rules for binary variables are discussed and 

evaluated. R-software procedures for discriminant analysis are introduced and analyzed for 

their use with discrete data. Methods based on the full multinomial, optimal, maximum 

likelihood rule and nearest neighbour procedures are treated. The results obtained ranked 

the procedures as follows: optimal, maximum likelihood, full multinomial and nearest 

neighbour rule. 
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INTRODUCTION  

Data often arise in the real world involving many objects with a number of measurements 

taken from them. These measurements may be quantitative (continuous or discrete) or 

qualitative (ordered or unordered categories). The latter may, in some cases be defined by 

only two categories and are then binary variables. Many important outcomes are binary such 

as program receipt, labour market status and educational attainment. These outcomes are 

frequently misclassified in data sets for reasons such as misreporting in surveys, the need to 

use a proxy variable or imperfectly linked data. A binary variable suffers from 

misclassification if some zeros are incorrectly recorded as ones and vice versa, which can 

arise from various causes. Binary classification is the task of classifying the elements of a 

given set into two groups on the basis of a classification rule. Some typical binary 

classification tasks are;  

(i) Medical testing to determine if a patient has certain disease or not (the 

classification property is the presence of the disease). 

(ii) Quality control in factories i.e.. deciding if a new product is good enough to be 

sold, or if it should be discarded (the classification property is being good 

enough). 

The problem of discriminating between two populations characterized by multinomial 

distribution is receiving extensive coverage in the statistical literature. One reason for the 
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rebirth of interest in the area is the frequent use of discriminant analysis in the social and 

behavioural sciences where data are often not of interval or ratio scale. In studies involving 

questionnaire data, demographic variables (more often than not measured by a two, three or 

four point scale) are utilized to discriminate between two or more groups. In such cases, it is 

more natural to assume underlying multinomial structures and proceed with classification 

procedures based on such characterizations, than to elect as in most frequently done, some 

variant of Fisher’s linear discriminant function. 

Several authors have studied multinomial classification in varying degrees of generality 

and with varying orientations. Included in this list are Cochran and Hopkins (1961), Hills 

(1967), Gilbert (1968), Glick (1972), Moore (1973), Goldstein and Rabiowitz (1975), 

Krzanowski (1975), Ott and Kronmal (1976), Goldstein and Wolf (1977) and Onyeagu and 

Osuji (2013). The present study is in line with the work of Gilbert and Moore in that it 

attempts to assess the performance of various procedures through Monte Carlo sampling 

experiments under different population structures. In this inferential setting, the researcher 

can commit one of the following errors. An object from 1  may be misclassified into 2 . 

Also, an object from 2  may be misclassified into 1 . If misclassification occurs, a loss is 

incurred. Let c (i/j) be the cost of misclassifying an object from j  into i . The objective of 

the study is to find the Best classification rule. “Best here means the rule that minimizes the 

expected cost of misclassification (ECM). Such a rule is referred to as the optimal 

classification rule (OCR). In this study we want to find the OCR where X is discrete and to 

be more precise, Bernoulli. 

 

2. The Optimal Classification Rule 

Independent Random Variables: 

Let 1  and 2  be any two multivariate Bernoulli populations. According to Onyeagu (2003), 

Let )/( jic  be the cost of misclassifying an item with measurement x  from j  into i  and 

let jq be the prior probability on i , where 2,1i  with 1
21
 qq  and probability 

mass Function )(xfi in i  where 2,1i . Suppose that we assign an item with 

measurement vector x to 1  if it is in some region 
rRR 1  and to 2  if x  is in some 
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region 
rRR 2  where 21 RRRr   and 021 RR . The expected cost of 

misclassification is given by: 

 
12

)/()2/1()/()1/2( 2211

RR

xfqcxfqcECM                     2.1                     

where )/(
2

1
R

xf  =p(classifying into 2 / 1 ) =p(2/1). 

The optimal rule is the one that partitions 
rR  such that  


1

)/( 2

R

xfECM  = p(classifying into 1 / 2 ) =p(1/2) is a minimum.  

   
12

)/()2/1()/(1)1/2( 2211
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xfqcxfqcECM                                                       2.2 

   
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)/()1/2()/()2/1()1/2( 11221

R

xfqcxfqcqc                                                2.3 

ECM is minimized if the second term is minimized. ECM is minimized if 1R  is chosen such 

that 

0)/()1/2()/()2/1( 1122   xfqcxfqc                                    2.4 

)/()1/2()/()1/2( 2211  xfqcxfqc                          2.5 
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
                                     2.6 

Therefore the optimal classification rule with respect to minimization of the expected cost of 

misclassification (ECM) is given by classify object with measurement 
0x  into 1  if 

)1/2(

)2/1(

1

2

2

1

cq

cq

f

f
                         2.7 

Otherwise classify into 2 . 

Without loss of generality, we assume that 2/121  qq  and c(1/2) = c(2/1). Then the 

minimization of the ECM becomes the minimization of the probability of misclassification, 
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p(mc) under these assumptions, the optimal rule reduces to classifying an item with 

measurement 
0x  into 1  if 

1
)/(

)/(
:

202

101 




xf

xf
Ropt                    2.8 

Otherwise classify the item into 2 . Since x is multivariate Bernoulli with Pij>0, i=1,2, 

j=1,2…r the optimal rule is: classify an item with response pattern x  into 
1  if  

 
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Otherwise, classify the item into 
2 . This rule simplifies to: 

Classify an item with response pattern x  into 1  if  

j

j
r
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Otherwise, classify into 2 . 

2.1 The Optimal Rule for a case of two variables 

 Suppose we have only two independent Bernoulli variables, x1,x2. Then the rule 

becomes: classify an item with response pattern x  into 1  if: 
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22

11

21
2

2212

2212
1

2111

2111:
2 q

q
In

q

q
Inx

pq

qp
Inx

pq

qp
InRB 

















                              2.1.1 

Otherwise, classify the item into 
2 . Written in another form the rule simplifies to: classify an 

item with response pattern x  into 1  if: 

cxwxwRB  2211:
2

                                 2.1.2 

Otherwise, classify the item into 2  where 
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2.2 Optimal rule for a case of three variables. 

 Suppose we have three independent variables according to Onyeagu (2003), the rule 

is: classify an item with response pattern x  into 1  if: 
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otherwise, classify the item into 2 . Written in another form the rule simplifies to: classify an 

item with response pattern x  into 1  if:  cxwxwxwRB  332211:
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2.3 Optimal rules for a case of four variables 

 Suppose we have four independent Bernoulli variables, the rule is classify an item 

with response pattern x  into 1 if  
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Otherwise, classify the item into 2 . Written in another form, the rule simplifies to: classify 
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1  if:  
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2.4 Probability of misclassification 

 In constructing a procedure of classification, it is desired to minimize on the average 

the bad effects of misclassification (Onyeagu 2003, Richard and Dean, 1988, Oludare 2011). 

Suppose we have an item with response pattern x from either 1  or 2 . We think of an item 

as a point in a r-dimensional space. We partition the space R into two regions R1 and R2 

which are mutually exclusive. If the item falls in R1, we classify it as coming from 1  and if 

it falls in R2 we classify it as coming from 2 . In following a given classification procedure, 

the researcher can make two kinds of errors in classification. If the item is actually from 1 , 

the researcher can classify it as coming from 2 . Also the researcher can classify an item 

from 2  as coming from 1 . We need to know the relative undesirability of these two kinds 
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of errors in classification. Let the prior probability that an observation comes from j  be 1q , 

and from 2  be 2q . Let the probability mass function of 1  be )(1 xf  and that of 2  

be )(2 xf . Let the regions of classifying into 1  be R1 and into 2  be R2. Then the 

probability of correctly classifying an observation that is actually from 1  into 1  is 

 )()1/1(
1

1 xfp
R

   and the probability of misclassifying such an observation into 2  

is )()1/2(
2

1 xfp
R

                                                                                                    2.4.1 

Similarly, the probability of correctly classifying an observation from 2  into 2  is   
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2

2 xfp
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  and the probability of misclassifying an item from 1  into 2  is 
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                    2.4.2 

The total probability of misclassification using the rule is 
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In order to determine the performance of a classification rule R in the classification of future 

items, we compute the total probability of misclassification known as the error rate. 

Lachenbruch (1975) defined the following types of error rates. 

(i). Error rate for the optimum classification rule, Ropt. When the parameters of the 

distributions are known, the error rate is 

)()()(
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1 21 xfqxfqRTPMC
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   which is optimum for this distribution. 

(ii) Actual error rate: The error rate for the classification rule as it will perform in future 

samples. 

(iii) Expected actual error rate: The expected error rates for classification rules based on 

samples of size 1n  from 1  and 2n  from 2  
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(iv) The plug-in estimate of error rate obtained by using the estimated parameters for 1  

and 2 . 

(v) The apparent error rate: This is defined as the fraction of items in the initial sample 

which is misclassified by the classification rule. 

 
1  2   

1  
11n  12n  1n  
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21n  22n  2n  

n  

The table above is called the confusion matrix and the apparent error rate is given by 
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Hills (1967) called the second error rate the actual error rate and the third the expected actual 

error rate. Hills showed that the actual error rate is greater than the optimum error rate and it 

in turn, is greater than the expectation of the plug-in estimate of the error rate. Martin and 

Bradley (1972) proved a similar inequality. An algebraic expression for the exact bias of the 

apparent error rate of the sample multinomial discriminant rule was obtained by Goldstein 

and Wolf (1977), who tabulated it under various combinations of the sample sizes n1 and n2, 

the number of multinomial cells and the cell probabilities. Their results demonstrated that the 

bound described above is generally loose.  

2.5 Evaluating the probability of misclassification for the optimal rule Ropt 

The optimal classification rule Ropt for )...,( 21 rxxxx   which is distributed multivariate 

Bernoulli is: classify an item with response pattern x  into 1  if 
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Otherwise classify into 2  

We can obtain the probability of misclassification for two cases 

Case I  Known parameters 

(a) General case where )...,( 211 irii pppp       2.5.2 

(b) Special case where )...,( iiii pppp  with the assumption 21 pp   2.5.3 

(c) Special case (b) with additional assumption that 10,21  pp  2.5.4 

For case (1a) the optimal classification rule optR  for )...,( 21 rxxxx   which is distributed 
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Case 1c: Special case (1b) with additional assumption that 21 pp   and 

211
11 ppq   and

22
1 pq  . The optimal classification rule optR for 

)...,( 21 rxxxx   distributed multivariate Bernoulli is: classify the item with response 

pattern x into 1  if 
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and to 2 otherwise. 

The probability of misclassification using the special case of optR  when 21 pp   is 
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For the fixed values of r and different values of 1p  and 2p  

Case 2: Unknown parameters 

(a) General case )...,( 21 ikiii pppp   
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In order to estimate 1p  and 2p  we take training samples of size 1n  and 2n  from 1  and 

2 respectively. In 1  we have the sample 
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The maximum likelihood estimate of 1p  is  
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Similarly the maximum likelihood of estimate of 2p  is  
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We plug in this estimate into the rule for the general case in 1(a) to have the following 

classification rule: classify an item with response pattern x into 1  if  
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otherwise classify into 2   

(b) Special case of 1b where )...,( iiii pppp  with the assumption that ii pp 21   

In this special case 
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The maximum likelihood estimate of 1p is  
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Likewise, the maximum likelihood estimate of 2
p  is 
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We plug in these two estimates into the equation for the special case (1b) to have the 

following classification rule: classify the item with response pattern x into 
1  if 
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Otherwise classify into 2  

The probability of misclassification is given by 
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(c) Special case of 2b with 10,,
2121

  pppp  we take training samples of 

size 2n from 2  and estimate 2p by  
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For a fixed value of 
21

,


 pp   

The classification rule is: classify the item with response pattern x into 1  if 
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otherwise classify into 2 . 

The probability of misclassification is given by  
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3.  Maximum Likelihood Rule (ML-Rule)  

The maximum likelihood discriminant rule for allocating an observation x to one of the 

populations 1 ,.. n  is to allocate x to the population which gives the largest likelihood to x. 

Classify in 1  if )/()/( 21 xwpxwp   or to 2  if   )/()/( 21 xwpxwp        3.1.      

where )/( 1 xwp  is the posterior probability which can be found by the Bayes Rule. But 

this is the same as: classify to 1  if  
)(

)()/(

)(

)()/( 2211

xp

wpwxp

xp

wpwxp 



           3.2 

where )/( iwxp  is the class conditional probability density function and )( iwp  is the prior 

probability. By denoting the classes as 1 , 2 … n , the maximum likelihood classifier is 

based on the assumed multivariate normal probability density function for each class given 

by  
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where i



  is the estimated mean vector for class i  and i



  is the estimated variance 

covariance matrix for class i  and p is the number of characteristics measured (ie the length 

of each vector x into one of the classes, recall that the density function )/( ixf   is 

evaluated for each of the k classes and the x is assigned to i  if (assuming equal costs of 

misclassification and equal a prior probabilities) one has 

)/()/( ji xfxf    for all ij               3.4 
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We assumed that the data can be modeled adequately by a multi-normal distribution. If the 

class-conditional probability density function )/( iwxp  is estimated by using the frequency of 

occurrence of the measurement vectors in the training data, the resulting classifier is non-

parametric. An important advantage of the non-parametric classifier is that any pattern, 

however irregular it may be, can be characterized exactly. This advantage is generally 

outweighed by two difficulties with the non-parametric approach. 

(i) It is difficult to obtain a large enough training sample to adequately 

characterize the probability distribution of a multi-band data set. 

(ii) Specification of a meaningful n-dimensional probability density function 

requires a massive amount of memory or very clever programming. 

4. The Full Multinomial Rule 

 Suppose we have discrete random variables x1, x2…xr, each assuming values 0 or 1. 

The joint probability mass function pmf according to Hand (1983) is given by: 

rx

r

xx

r

r ppp
xxx

n
xxxp ...

!!...!

!
)...,( 21

21

21

21                     4.1     

for xi =0,1…n for each i  but with the xi subject to the restriction nx
r

i

i 
1

  

The range space Rx of x consists of vectors ),...,( 21 rxxxx  , where riRx
ixi ,...1,   and for 

our purposes is assumed that it is generated by an r-random vector whose argument is 0 or 1. 

Suppose that two groups, 1  and 2 , are large populations having prior probabilities 1
q  and 

2
q , where 1

21
 qq  under the full multinomial, the probability mass function denoted by 

)(xf i  with minimum variance unbiased estimators is  

2,1,
)(

)(  i
n

xn
xf

i

i
i                    4.2                    

where )(xni  is the number of the individuals in a sample of size in  from the ith  population 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies  

Vol.2,No.4,pp.40-61, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

55 

ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

 

having response pattern x. The classification rule is: classify an item with response pattern x 

into 1  if : 

  
2

2

1

1 )()(
21
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xn
q
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q                     4.3            

and to 2  if   
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2

1
 if : 

2

2

1

1 )()(
21

n

xn
q

n

xn
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An intuitive estimate based on D of the optimal error is the apparent error simply defined as 

the proportion of errors made by the rule. The apparent error of the sample based full 

multinomial classification rule assumes the form: 

 

21

21 )(),(min

nn

xnxn

D x





                                                                          4.6       

where )(),( 21 xnxn  are the number of sample values from population 1  and 2  

respectively. 

 The advantages of using the full multinomial rule according to Onyeagu (2003) are as 

follows: 

It is extremely simple to apply. Secondly, the computation of apparent error does not require 

rigorous computational formula. 

 The disadvantages are as follows:  

There are however, certain observations that are apparent and point to potential difficulties in 

applying the so-called full-multinomial rule. Perhaps, the most prominent is the problem of 

state proliferation made especially troublesome in practice by the availability of relatively 

small sample sizes, r variables each assuming only k distinct values, generate kr states. 

Obviously, a large number of observations related to the number of variables is required if 

sufficient data in each state are to be available for estimation of state probabilities. 
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 A part from the problem of zeros in states or the potential of far observations on 

which to base the estimation of state probabilities in the issue that for a given state a zero 

from 1  might mean something entirely different from a zero coming from 2  if the optimal 

procedure is used. Moreover, especially if samples of disproportionate sizes are available, 

error rates generated by the somewhat forced allocation caused by a zero in, say, state j from 

2 can be potentially misleading. It is because of these difficulties that some researchers have 

been reluctant to apply the full multinomial procedures in situations where the data differs 

from severe sparseness. 

5. The Nearest Neighbour Procedure 

The kth nearest neighbour method (K-NN) is another tool that is used whenever the class 

density functions, fi(x) are known. In fact, this was the first non-parametric method for 

classification and was introduced by Fix and Hodges (1951). The idea behind the method is 

relatively simple. Clark (1978) define a random observation Xm, },...{ 1 nm xxx  as the nearest 

neighbour to x if: Min d(xj,x)=d(xm,x), j=1,2 …n             5.1                                      where 

d(xj,x) is a distance function. The nearest neighbour rule decides that x belongs to the class of 

its neighbour Xm. The above is the single nearest neighbour rule, that is k = I, and only 

applies to the single nearest neighbour to x. All other observations are ignored. The idea is 

extended naturally to the k-nearest neighbours of x. Lachenbruch (1975) describes the 

general K-NN rules as follows: Suppose there are n1 and n2 sample observations from 1  

and 2  respectively. Suppose that the objective is to classify an observation x to one of 1  

or 2 . Using a distance function, d(xij,x), order the values, xij. Let ki be the number of 

observations from  1  among the k closet observations to x. The rule is to assign x to 1 if: 

2

2

1

1

n

k

n

k
                    5.2 

otherwise to 2 . In other words, the procedure involves the relatively simple concept of 

assigning a random observation x to the class having the greater proportion of observations 

closet to x. As  in  it has been found that (3.1.79) tends to the maximum likelihood 
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rule. There are several variations of the discrete analogue to the above estimator, each with 

their own operational difficulties. (See Hand (1993) for details. Hills (1967) introduced 

perhaps the simplest nearest neighbour estimator for binary data, which classifies a particular 

response vector x based on the number of cells in response vectors y that differ from x. 

Specifically, let k be the number of cells in which x and y differ. Then define 

 kyxyxyR jj  )()( 1
 to be a rule which classifies x if each of its cells differs 

by no more than k components. That is, classify x into 1  if:  
R

j

R

j

n

yn

n

yn

2

2

1

1 )()(
      5.3          

and into 2  otherwise.  

Advantages and disadvantages 

However, these methods are not without their limitations and are based on some assumptions. 

Although nearest neighbour is distribution free and the classifier then has no explicit 

functional form, it is very difficult to check the assumption that the distribution is locally 

constant near x. Also the choice of the distance function must be taken into consideration. It 

must be appropriate and meaningful. For example, Euclidean distance is usually the default 

choice but may not be appropriate as in such cases where the variables are of very different 

magnitudes and must be standardized first. Also, distances in high dimensions becomes 

complicated and assigning one object to be nearer than other gets blurred because as p gets 

increasingly larger the ratio of nearest to furthest neighbours approaches 1.  

6. Simulation Experiments and Results 

The four classification procedures are evaluated at each of the 118 configurations of n, r and 

d. The 118 configurations of n, r and d are all possible combinations of n =20, 40, 60, 80, 

100, 200, 300, 400, 600, 700, 800, 900, 1000, r =3, 4, 5 and d = 0.1, 0.2, 0.3, and 0.4. A 

simulation experiment which generates the data and evaluates the procedures is now 

described. 

(i)  A training data set of size n is generated via R-program where 21
nn     

observations are sampled from 1 , which has multivariate Bernoulli distribution with 

input parameter 1p  and 22
nn   observations sampled from 2  which is multivariate 
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Bernoulli with input parameter rjp ...1,2  . These samples are used to construct the 

rule for each procedure and estimate the probability of misclassification for each 

procedure is obtained by the plug-in rule or the confusion matrix in the sense of the 

full multinomial. 

(ii)  The likelihood ratios are used to define classification rules. The plug-in estimates of 

error rates are determined for each of the classification rules. 

(iii)  Step (i) and (ii) are repeated 1000 times and the mean plug-in error and variances for 

the 1000 trials are recorded. The method of estimation used here is called the 

resubstitution method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following table contains a display of one of the results obtained 

Table 6(a) Apparent error rates for classification rules under different parameter values, sample sizes 

and Replications  

 P1 = (.3, .3, .3, .3, .3)    P2 = (.7, .7, .7, .7, .7) 
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Sample sizes Optimal Full M. NN ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.157125 

0.161900 

0.163290 

0.162967 

0.162565 

0.162783 

0.404243 

0.163018 

0.163075 

0.163463 

0.163354 

0.163273 

0.110074 

0.127855 

0.143526 

0.149837 

0.156384 

0.159788 

0.384500 

0.161992 

0.162454 

0.163084 

0.163508 

0.162916 

0.504725 

0.504016 

0.498380 

0.501275 

0.500097 

0.498055 

0.500762 

0.499159 

0.499249 

0.496118 

0.497806 

0.502523 

0.151137 

0.160683 

0.162775 

0.162137 

0.163167 

0.163158 

0.404750 

0.162877 

0.162631 

0.163254 

0.163643 

0.163039 

p(mc) = 0.16308 

Table 6(b) Actual Error rate for the classification rules under different parameter values, sample sizes 
and replications. 

 P1 = (.3, .3, .3, .3, .3)  P2 = (.7, .7, .7, .7, .7)  )()( mcpmcp


  

Sample size Optimal Full  M. NN ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.040271 

0.032751 

0.027786 

0.022462 

0.017981 

0.0150903 

0.012793 

0.010874 

0.009666 

0.009308 

0.008725 

0.010713 

0.052706 

0.042691 

0.037015 

0.031623 

0.026657 

0.020882 

0.018476 

0.014643 

0.013574 

0.012778 

0.012243 

0.022517 

0.094217 

0.089946 

0.087373 

0.083515 

0.083256 

0.081724 

0.082592 

0.081390 

0.082388 

0.080319 

0.081073 

0.030042 

0.054898 

0.045567 

0.039006 

0.031104 

0.025252 

0.020167 

0.017482 

0.014753 

0.013359 

0.012764 

0.012117 

0.017158 

Tables 6(a) and (b) present the mean apparent error rates and standard deviation (actual error 

rates) for classification rules under different parameter values. The mean apparent error rates 
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increases with the increase in sample sizes and standard deviation decreases with the increase 

in sample sizes. Predictive and Dillon-Goldstein improved with the increase in the number of 

variables while maximum decrease in performances. From the analysis, optimal is ranked 

first, followed by linear discriminant analysis, predictive rule, Dillon-Goldstein, likelihood 

ratio, maximum likelihood, full multinomial and nearest neighbour occupied the last position 

as shown below. 

 

Classification Rule     Performance 

Optimal (OP)       1 

Maximum Likelihood (ML)     2 

Full Multinomial (FM)     3 

Nearest Neighbour (NN)     4 

 

Conclusion 

We obtained two major results from this study. Firstly, using simulation experiments 

we ranked the procedures as follows: Optimal, Maximum likelihood, Full multinomial and 

Nearest Neighbour. The best method was the optimal classification rule. Secondly, we 

concluded that it is better to increase the number of variables because accuracy increases with 

increasing number of variables.    
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