# The same-order type $\boldsymbol{A}_{5}$ characterization 

Rizan Habibi<br>Kordestan University<br>doi: https://doi.org/10.37745/ijmss.13/vol11n12329<br>Published April 18, 2023

Citation: Habibi R. (2023) The same-order type $\boldsymbol{A 5}$ characterization, International Journal of Mathematics and Statistics Studies, Vol.11, No.1, pp.23-29

ABSTRACT: This study examines the same-order type of $G$, suppose $G$ be a finite group that $\alpha(G)=\left\{S_{t} \mid t \in \pi_{e}(G)\right\}$ and define nse $(G)$ or $\alpha(G)$ is the same-order type whose $S_{t}$ is the number of elements of order that $t \in \pi_{e}(G)$ and $\pi_{e}(G)$ is the set of elements order of $G$. If $|G|=n$ in $G$, then we say that $G$ is $\alpha_{n}$-group. Shin in [1] showed that every $\alpha_{2}$-group is nilpotent and every $\alpha_{3}$ group is solvable. In addition, the structure of the such group and proved if $G$ be an $\alpha_{n}$-group then $|\pi(G)| \leq n$, and conjectures that if the researcher examines the same-order type of the nonabelian simple group. This study proves that if $G$ is a simple nonabelian group, the same-order type of $G$ has four elements if and only if $G$ is isomorphism with $A_{5}$. This study proves that for any nonabelian simple group $G$, we have $S_{p} \neq S_{q}$ for odd prime divisors $p$ and $q$ of order of $G$.

KEYWORDS: simple group, order of elements, characterization, type of order

## INTRODUCTION

One of the notable matters in recent years is the issue of distinguishing groups by nse, which is one of One of the the simple finite groups. The purpose of studying this investigation is the recognition of necessary parts which should be mentioned in the text. The first section is an introduction to these finite groups.

Let P be algebraic, it is distinguishable if any group in the category P of groups by the characteristic U in the category G . Whenever any group in category U has property P isomorphism with group G.

The set of orders of the finite groups showed by $\pi_{e}(G)$. Identification of groups by $\pi_{e}(G)$ is a broad and attractive topic. For any element like n of $\pi_{e}(G)$, the number of members that have order $n$ of that group showed by $S_{n}$. In this case, the set of all these numbers is called nse of that group. It has been proven, the identifiability of some finite groups has been determined by nse $[2,3]$. This study shows the same group by using the same-order type for the alternating group $A_{5}$.

Actually, in the simple nonabelian group $G$ which the same-order type of that has four-membered, then there is only $\mathrm{A}_{5}$ which $\mathrm{G} \cong \mathrm{A}_{5}$.

This research studies the identification of simple family groups of line groups. The groups and graphs that are noticed are $C_{p, p}$-group and Suzuki groups $\operatorname{Sz}(\mathrm{q})$, prime graphs, and $\operatorname{Ln}(\mathrm{q})$. Also, we guess that for every nonabelian simple group $G$, exist odd prime divisors p and q of $|G|$ that $S_{p} \neq S_{q}$.

## DATA ANALYSIS AND RESULTS

Characterization of group $A_{5}$ was done by same-order type. It will be defined $\pi(\mathrm{n})$ as the set of all prime divisors n for any integer $\mathrm{n} . \pi(\mathrm{G})$ is defined as a set of prime numbers p so that G contains a member of order P. Now, for the finite group G, the sign $\pi_{e}(G)$, is the full order set of the members G. Also, we consider symbol $S_{\mathrm{t}}$ for number of members of order t in G that $\mathrm{t} \in \pi_{e}(G)$.

In the alternating group of $S_{3}$ and dihedral group $\mathrm{D}_{10}, \pi(\mathrm{G})$ is as below:

$$
\begin{gathered}
1 . \pi\left(S_{3}\right)=\{1,2,3\} \\
\text { 2. } D_{10}=\left\{e, x, x^{2}, x^{3}, x^{4}, y, x y, x^{2} y, x^{3} y, x^{4} y\right\} \\
\pi\left(D_{10}\right)=\{1,2,5\}
\end{gathered}
$$

and $\pi_{e}(G)$ for alternating permutation group $\mathrm{A}_{4}$ and dihedral group $\mathrm{D}_{8}$ is as follows:

$$
\pi_{e}\left(D_{8}\right)=\{1,2,4\}, \quad \pi_{e}\left(A_{4}\right)=\{1,2,3\}
$$

For example, in $\mathrm{D}_{12}, \mathrm{~S}_{\mathrm{t}}$ is as follows:
$S_{1}=1, S_{2}=7, S_{3}=2, S_{6}=2$
Also, for $\mathrm{A}_{4}$ :
$S_{1}=1, S_{2}=3, S_{3}=8$
Specify the same-order type of group G with the symbol $\alpha(G)$ or nse $(G)$. This is equal to set of $\left\{S_{t} \mid t \in \pi_{e}(G)\right\}$. On the other hand, the equivalence relation $\sim$ on G is defined by

$$
|g|=|h| \Leftrightarrow g \sim h
$$

Then it can be seen that the set of sizes of equivalence classes is the same as $\alpha(\mathrm{G})$. For instance in $\mathrm{D}_{12}$ and $\mathrm{D}_{8}, \alpha(\mathrm{G})$ is as follows:

$$
\alpha\left(\mathrm{D}_{12}\right)=\left\{\mathrm{S}_{\mathrm{t}} \mid \mathrm{t} \in \pi_{e}\left(\mathrm{D}_{12}\right)\right\}=\{1,2,7\}
$$

$$
\alpha\left(\mathrm{D}_{8}\right)=\left\{\mathrm{S}_{\mathrm{t}} \mid \mathrm{t} \in \pi_{e}\left(\mathrm{D}_{8}\right)\right\}=\{1,2,5\} .
$$

The researchers also use $X_{n}$ to shows the set of members of order $n$. Actually, $S_{n}$ is the cardinal of the set $\mathrm{S}_{\mathrm{n}}$.

G is an $\alpha_{n}$-group if $|\alpha(\mathrm{G})|=\mathrm{n}$, clearly the only $\alpha_{1}$-group is $1 \& \mathrm{Z}_{2}$.
Also $Z_{5}$ is $\alpha_{2}$-group; because $\left|\alpha\left(Z_{5}\right)\right|=|\{1,5\}|=2$ and $D_{8}$ is $\alpha_{3}$-group; because


Shen in [3] showed that every $\alpha_{2}$-group is nilpotent and every $\alpha_{3}$-group is solvable. In addition, he checked the structure of such groups and conjectured that if $G$ is an $\alpha_{n}$-group, then $|\pi(\mathrm{G})| \leq \mathrm{n}$.

For example, since in $Z_{p}:\left|\pi\left(Z_{p}\right)\right|=2$, so $Z_{p}$ is an $\alpha_{2}$-group and nilpotent. Also in $S_{3},\left|\pi\left(S_{3}\right)\right|=3$ so $S_{3}$ is an $\alpha_{3}$-group and solvable.

Lemma1. If $S_{\mathrm{k}}$ is finite, then $\phi(k) \mid S_{k} .(\phi(k)$ is Eulerian function $)$.
Proof: if G hasn't any member of order k , Then the theorem is clear because zero is a multiple of every integer. Now assuming that $a$ is a member of $G$ and $|a|=k$, on the other hand, subgroup generated by a , has $\phi(k)$ members of order k . if all of the members of order k be in this subgroup, then $\phi(k)=\mathrm{S}_{\mathrm{k}}$ and the verdict is true. Otherwise, there is $\mathrm{b} \in \mathrm{G}$ that $\mathrm{b} \notin\langle\mathrm{a}\rangle$ and $|\mathrm{b}|=\mathrm{k}$. but $\langle\mathrm{a}\rangle$ and $\langle\mathrm{b}\rangle$ don't have a common member of order $k$, because if $\mathrm{c} \in\langle\mathrm{a}\rangle \mathrm{n}\langle\mathrm{b}\rangle$ and $|c|=k$, then $\langle\mathrm{c}\rangle$ $=\langle\mathrm{a}\rangle$. Similarly, $\langle\mathrm{c}\rangle=\langle\mathrm{b}\rangle$ then $\langle\mathrm{b}\rangle=\langle\mathrm{a}\rangle$, Which contradicts with assumption.
$\mathrm{b} \notin\langle\mathrm{a}\rangle$, so all cyclic subgroup of order k , have $\phi(k)$ members of order k and don't have a common member and this gives the result.

Lemma 2. Let G be a finite group and $\mathrm{n} \in \pi_{\mathrm{e}}(\mathrm{G})$ in this case, $\mathrm{n} \mid \sum_{d \mid n} S_{d}$.
Proof: according to Lagrange theorem $\mathrm{n}||G|$ and since n$| \mathrm{f}(\mathrm{n})$ (see in $[3,4]$ )
So $\mathrm{n} \mid \mathrm{f}(\mathrm{n})=\sum_{d \mid n} S_{d}$.
Remark: if $\mathrm{m} \mid \mathrm{n}$ then $\alpha\left(\mathrm{C}_{\mathrm{m}}\right) \subseteq \alpha\left(\mathrm{C}_{n}\right)$ that $\mathrm{C}_{\mathrm{m}}$ and $\mathrm{C}_{\mathrm{n}}$ are cyclic groups of order m and n , respectively.

Proof: since $m \mid n$ and $C_{m}$ and $C_{n}$ are cyclic groups, so $\left(C_{m}\right) \leq\left(C_{n}\right)$.
On the other hand, there is a natural number h which $\mathrm{n}=\mathrm{mh}$.
Suppose $x \in \alpha\left(C_{m}\right)$, that $x=S_{t}$. we prove $x \in \alpha\left(C_{n}\right)$.
For every $g^{h} \in C_{m}$, we prove $x \in \alpha\left(C_{n}\right)$.

For every $\mathrm{g}^{\mathrm{h}} \in \mathrm{C}_{\mathrm{m}}$, we have:

$$
\mathrm{O}\left(\mathrm{~g}^{\mathrm{h}}\right)=\frac{m}{(m, h)}=t \quad, \quad t \in N .
$$

Also $g^{h d} \in \mathrm{C}_{\mathrm{n}}$ that

$$
\mathrm{O}\left(g^{h d}\right)=\frac{n}{(h d, n)}=\frac{n m}{(h d, m d)}=\mathrm{t}
$$

So it follows

$$
\begin{gathered}
\mathrm{x}=\mathrm{S}_{\mathrm{t}} \in \alpha(\mathrm{Cm}) . \\
\mathrm{x}=\mathrm{S}_{\mathrm{t}}=\left|\left\{t \mid \mathrm{O}\left(g^{h}\right)=\mathrm{t} ; g^{h} \in \mathrm{C}_{m}\right\}\right|=\left|\left\{t \mid \mathrm{O}\left(g^{h d}\right)=\mathrm{t} ; g^{h d} \in C_{n}\right\}\right| \\
\Rightarrow \mathrm{x} \in \alpha\left(\mathrm{C}_{\mathrm{n}}\right) .
\end{gathered}
$$

Lemma 3. For every finite group G, $S_{n}=l \phi(n)$ which $l$ is the the number of cyclic subgroup of order n .

Proof: we know if K be a cyclic group of order n . Then K has $\phi(K)$ members of order n . Let N and K be two cyclic subgroups of order n . If $\mathrm{x} \in K \cap N$ be a member of order n , then because

$$
\langle\mathrm{x}\rangle \leq N .<x>\leq K, \quad|<\mathrm{x}\rangle \mid=\mathrm{n}
$$

So $\langle x\rangle=K=N$.
Lemma 4. (see [5]) If G be a nonabelian simple $C_{p, p}$ - grop, then G is isomorphism to the one of the following groups:

1. $A_{5}, A_{6}, L_{3}(\mathrm{q})$;
2. $L_{2}(\mathrm{q})$ where q is a Fermat prime or a prime power of 2 ;
3. $\mathrm{Sz}(\mathrm{q})$, where q is an odd prime power of 2 .

Lemma 5: (see [6]) If $\mathrm{G} \neq A_{10}$ and $\Gamma(G)$ is connected and G is a finite simple group, then there is three prime members $\mathrm{r}, \mathrm{s}, \mathrm{t} \in \pi(\mathrm{G})$ such that $\{\mathrm{rs}, \mathrm{st}, \operatorname{tr}\} \cap \pi_{e}(G)=\varnothing$.

Lemma 6: Let G be a nonabelian finite simple group. In this case, if there is a prime number p that $S_{2 p}=0$, then the centralizer of any element of order 2 is an $\alpha_{2}$-group.

Proof: Let $\mathrm{x} \in G$ and $\mathrm{O}(\mathrm{x})=2^{l}$. In this case, we prove the centralizer of any elements of order 2 is an $\alpha_{2}$-group, that means $\left|C_{G}(x)\right|=2^{l}$.

We prove by contradiction if $\left|C_{G}(x)\right| \neq 2^{l^{p}}$ then $p\left|\left|C_{G}(x)\right|\right.$ and $\mathrm{p} \neq 2$, so $\exists \mathrm{y} \in C_{G}(x)$ that $\mathrm{O}(\mathrm{y})=$ p. Now, because $\mathrm{O}(\mathrm{xy})=\frac{O(x) O(y)}{(O(x), O(y))}=2^{1} p \Rightarrow S_{2 p} \neq 0$ which is a contradiction, so the centralizer of any element of order 2 is an $\alpha_{2}$-group.

Lemma 7: (see [3]) Let $G$ be a simple group. In this case, if there is a number $p$ such that $p||G|$ and p be an odd number, then $\Gamma(G)$ is connected.

Lemma 8: Let G be a finite simple nonabelian group. In this case $S_{p} \neq S_{q}$ where p and q are odd prime divisors.

Proof: Put $\pi(\mathrm{G})=\left\{2, p_{1}, p_{2}, \ldots, p_{t}\right\}$. Suppose on the contrary, that

$$
S_{p_{1}}=S_{p_{2}}=\cdots=S_{p_{t}}=n .
$$

In this case, since $p_{i} \mid p_{i} p_{j}$ and
$p_{i} p_{j} \mid f\left(p_{i} p_{j}\right)=1+S_{p_{i}}+S_{p_{j}}+S_{p_{i} p_{j}}$ so
$p_{i} \mid 1+S_{p_{i}}+S_{p_{j}}+S_{p_{i} p_{j}}=1+2 \mathrm{n}+S_{p_{i} p_{j}}$ and also $p_{i} \mid 1+S_{p_{i}}=1+n$ so we have
$\left\{\left.\begin{array}{c}p_{i} \mid 2+2 S_{p_{i}} \\ p_{i} \mid 1+2 \mathrm{n}+S_{p_{i} p_{j}}\end{array} \rightarrow p_{i} \right\rvert\, S_{p_{i} p_{j}}-1\right.$
And $S_{p_{i} p_{j}}=k \in\{0, n\}$, for both distinct indexes $\mathrm{i}, \mathrm{j} \in\{1,2, \ldots, \mathrm{t}\}$.
so we have the following two moods:
State 1: for all i $\leq n$, if $S_{p_{i} p_{j}}=0$, then according to the lemma 6 , the centralizer of any element of order 2 is an $\alpha_{2}$-group; that means $G$ is a $C_{2,2}$ - group so according to lemma 4 , it's enough to consider the groups $\mathrm{G}=A_{6}, \mathrm{G}=L_{3}(4)$. But for this group it's easy to see (using the computational group theory system GAP) that $S_{p} \neq S_{q}$ for any two prime divisors p and q of $|\mathrm{G}|$.

State 2: if there exists $i \in\{1,2, \ldots, \mathrm{n}\}$ such that $S_{2 p} \neq 0$, then the prime graph of G is connected. According to the lemma 5, there exist three primes $\mathrm{r}, \mathrm{s}, \mathrm{t} \in \pi(\mathrm{G})$ such that
$\{\mathrm{rs}, \mathrm{st}, \operatorname{tr}\} \cap \pi_{e}(G)=\emptyset$ which is a contradiction (for every $\mathrm{i}, \mathrm{j}$ that $S_{p_{i} p_{j}}=k \neq 0$ ). Note that if $\quad \mathrm{G}$ $=A_{10}$, then it is easy to see (using GAP) that there exist two odd prime divisors p and q of the $|\mathrm{G}|$ such that $S_{p} \neq S_{q}$.

Lemma 9: if G be a simple group, then $S_{2} \neq 1$.
Proof: state 1: if $Z(G)=G$, then $G$ is abelian and according to simplicity G , it should be $\mathrm{G} \cong Z_{P}$.

In this case, there are two moods for $Z_{P}$ :
Case 1: if $\mathrm{p}=2$, then there is a member of order 2 that $S_{2}=1$.
Case 2: if $\mathrm{p} \neq 2$, it doesn't have a member of order 2 and $S_{2}=\emptyset$. So $S_{2} \neq 1$ and this is not true for $Z_{1}$. So $S_{2}=1$.

State 2: if $Z(G) \neq G$, then we prove by contradiction if assume that $S_{2}=1$, in this case, $\exists e \neq x \in G$, so that $x^{2}=1$ and there is only member x that $x^{2}=1$, now for every $\mathrm{g} \in G$ we show $\mathrm{gx}^{-1}$ is of the order 2 . $\left(\mathrm{gxg}^{-1}\right)^{2}=\operatorname{gx} g^{-1} \operatorname{gx} g^{-1}=\mathrm{g} x^{2} g^{-1}=\mathrm{g}(1) g^{-1}=(1)$.
then since x is the only member of order 2 , so for every $\mathrm{g} \in G$, we have

$$
\operatorname{gx} g^{-1}=x \Rightarrow g x=x g
$$

so $x \in Z(G)$. And since $x \neq e$, thus $Z(G) \neq 1$. It means $1 \neq Z(G) \nsubseteq G$, then $G$ is not simple.
Lemma 10: let $G$ be a finite nonabelian simple group, then $|\mathrm{G}|$ has odd prime divisors p and q such that $\left\{1, S_{2}, S_{p}, S_{q}\right\} \subseteq \alpha(G)$.

Every nonabelian finite simple group is an $\alpha_{n}$-group with $\mathrm{n} \geq 4$. (note that $S_{2} \neq 1$, since otherwise the center of G would be nontrivial).

Lemma 11: $\varphi(n)$ is always even.
Proof: suppose $\mathrm{n}=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{r}{ }^{\alpha_{r}}$ that $p_{i}$ are distinct prime numbers and $\alpha_{i} \in Z$ and also $\alpha_{i} \geq 1$. Firstly for every i we show $\phi\left(p_{i}^{\alpha_{i}}\right)$ is even. If $p_{i}=2$ then the verdict is true. Because $\phi\left(p_{i}{ }^{\alpha_{i}}\right)={p_{i}}^{\alpha_{i}}-p_{i}{ }^{\alpha_{i-1}}$ thus, the difference of both even numbers lead to $\phi\left(p_{i}{ }^{\alpha_{i}}\right)$ being even. Now if $p_{i} \neq 2$ then $p_{i}$ is an odd number. So according to the relationship $\phi\left(p_{i}^{\alpha_{i}}\right)=p_{i}^{\alpha_{i}}-$ $p_{i}{ }^{\alpha_{i-1}}$, again, the difference of both odd numbers become even. Therefore, $\phi\left(p_{i}{ }^{\alpha_{i}}\right)$ is even, for every i , thus $\phi(n)=\phi\left(\prod_{i=1}^{r} p_{i}{ }^{\alpha_{i}}\right)=\prod_{i=1}^{r} \phi\left(p_{i}{ }^{\alpha_{i}}\right)$ that means
$\varphi(n)=\varphi\left(p_{1}{ }^{\alpha_{1}}{p_{2}}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}\right)=\varphi\left(p_{1}\right) \varphi\left(p_{2}\right) \ldots \varphi\left(p_{r}\right)$, because $\phi\left(p_{i}{ }^{\alpha_{i}}\right)$ is even, as a result, their multiplication is even.

Theorem: let G be a simple nonabelian group with same-order type having four members, in this case, $\mathrm{G} \cong A_{5}$.

Proof: since G is a simple, so $S_{2} \geq 1$, because otherwise, the center $G$ has a member of order 2 which is a contradiction. Suppose $S_{2}=m$. On the other hand, due to the simplicity of G and Burnside theorem, $\Pi(\mathrm{G}) \geq 3$ and according to the previous research [8] we chose the set
$\{2, \mathrm{p}, \mathrm{q}\} \subseteq \Pi(\mathrm{G})$ that $S_{2}=S_{p}=S_{q}$ and $\Pi(\mathrm{G})=\{2, \mathrm{p}, \mathrm{q}\}$. Now according to the [7], simple nonabelian group $G$ have exactly three prime divisors are classified into the following groups:

$$
\begin{array}{ll}
L_{2}(q), & q \in\{5,7,8,9,17\} \\
L_{3}(3), & U_{3}(3), \quad L_{4}(4)
\end{array}
$$

It can be proved by using GAP software that the set of the same-order type, all of these are
$\alpha_{n}$-group by $5 \leq \mathrm{n}$ except $A_{5}$.

## CONCLUSION

According to the previous papers, if $G$ be a simple nonabelian group, which is the set of sameorder type should have four elements then will have $\mathrm{G} \cong A_{5}$.

If $G$ be a simple nonabelian group, then for every odd prime divisor $q$ and $p$ of $|\mathrm{G}|$ is the result $S_{p} \neq S_{q}$.

## REFERENCES

1. Shen, R., Zou, X., Shi, W.: A characterization of A5 by same-order type, Monatsh. Math., to appear
2. Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups. Monatsh.
Math. 163, 39-50 (2011)
3. Shen, R.: On groups with given same order type. Comm. Algebra 40, 2140-2150 (2012)
4. Frobenius, G.: Verallgemeinerung des Sylowschen Sätze. Berliner Sitz, 981-993, (1895)
5. Suzuki, M.: Finite groups with nilpotent centralizers. Trans. Am. Math. Soc. 99, 425-470 (1961)
6. Lucido, M.S., Moghadamfar, A.R.: Group with complete prime graph connected components. J. Group

Theory 31, 373-384 (2004)
7. Herzog, M. On finite groups with cyclic sylow subgroups for all add primes, To appear.
8. Taghvasani, L .J., and Zarin, M., A characterization of $A^{\Delta}$ by its sameorder type. Monyash Math, 182 (2016), 731 -736.

